Abstract:
There is provided a scanning optical system including a collimator lens being placed on an optical path between a light source and a deflecting system. At least one of a front surface and a rear surface of the collimator lens includes a central area through which part of the laser beam in the vicinity of a central axis of the laser beam passes, at least one first outer area having an effect on the laser beam so that the laser beam after passing through said at least one first outer area is given a first phase difference not including a phase difference of zero, and at least one second outer area having an effect on the laser beam so that the laser beam after passing through said at least one second outer area is given a second phase difference being different from the first phase difference and including a phase difference of zero.
Abstract:
A scanning optical system includes a polygonal mirror that deflects the even number of beams, which are incident thereon along optical paths arranged symmetrically with respect to a plane perpendicular to a rotation axis thereof. An imaging optical system for converging the beams includes lenses for converging the beam, in an auxiliary scanning direction, respectively. The lenses have the same shapes, and are arranged symmetrically with respect to the plane. The orientation of the lenses on one side of the plane is oriented oppositely, in the auxiliary scanning direction, to the other lenses located on the other side of the plane.
Abstract:
An objective lens used for recording data to and/or reproducing data from a plurality of types of optical discs having different thicknesses of cover layers. The objective lens satisfies a condition 0.02
Abstract:
There is provided an objective lens used for a plurality of types of optical discs having a front surface and a rear surface, each of which includes an inner region and an outer region. The outer region has a surface shape which suppresses a coma caused when a beam used for a first optical disc is incident thereon obliquely with respect to an optical axis of the objective lens. The inner region is configured such that, at a boundary position between the inner region and the outer region, the coma caused when a beam used for a second optical disc is incident on the inner region obliquely at a first angle with respect to the optical axis is less than the coma caused when the beam used for the second optical disc is incident on the outer region obliquely at the first angle with respect to the optical axis. Further, an inclination θ2A of the inner region and an inclination θ2B of the outer region of the rear surface satisfy a condition: −2.5
Abstract:
There is provided an objective optical system used for information recording/reproducing for three types of optical discs. The objective optical system includes an objective lens, and a diffraction structure formed on an optical surface. The diffraction structure includes a first area for contributing to converging the third light beam. The first area includes first and second steps defined by first and second optical path difference functions, respectively. The first step is configured such that diffraction orders at which diffraction efficiencies for the first, second and third light beams are maximized are 1st order, 0-th order and 0-th order, respectively. The first step satisfies a condition: −0.36×102
Abstract:
In an optical information recording/reproducing device which executes information reading or writing on multiple types of optical discs having different data densities by selectively using first through third light beams having first through third wavelengths, respectively, at least one side of an optical element is provided with a step structure including a plurality of concentric refracting surfaces and steps between them. The steps include first steps each giving a first optical path length difference specified by a first optical path difference function, second steps each giving a second optical path length difference specified by a second optical path difference function, and special steps each giving an optical path length difference obtained by the sum or difference of/between the first and second optical path length differences. Annular zone widths between adjacent steps are set at 10 times the first wavelength or more.
Abstract:
There is provided an objective lens used for an optical information recording/reproducing device for recording information to and/or reproducing information from two types of optical discs, by selectively using one of two types of substantially collimated light beams including first and second light beams. When wavelengths of the first and second light beams are respectively represented by λ1 (nm) and λ2 (nm), λ1
Abstract translation:提供了一种用于光信息记录/再现装置的物镜,用于通过选择性地使用包括第一和第二光束的两种类型的基本上准直的光束中的一种来从两种类型的光盘记录信息和/或再现信息。 当第一和第二光束的波长分别由λ1(nm)和λ2(nm)表示时,满足λ1<λ2。 物镜包括第一光学元件和由与第一光学元件不同的材料制成的第二光学元件。 第一和第二光学元件通过固井表面胶合。 此外,物镜被配置为满足以下条件:0.006 <{(nR·丁·2·n························({ 2 3)+ 8×A fort 42}×f ud 1 3 + 2.29] <0.038。 (1)
Abstract:
An objective lens, for an optical information read/write device that performs read/write operations on each of a plurality of optical discs using a corresponding one of three laser beams having first, second, and third wavelengths λ1, λ2, and λ3 (nm) satisfying a relationship λ1