Abstract:
The invention provides techniques for forming composites including XW.sub.2 O.sub.8, where X=Zr, Hf, or a combination, dispersed within a continuous, metal matrix. A low to zero coefficient of thermal expansion material, with high thermal and electrical conductivity, results. One method for forming the composite involves coating particles of XW.sub.2 O.sub.8 with a layer of metal, then isostatically pressing the particles under conditions amenable to formation of a composite. The technique of coating, with a more malleable phase, a phase that undergoes a disadvantageous phase transformation of decomposition upon exposure to a threshold pressure at a set temperature can be applied to a variety of materials.
Abstract:
A method for inducing superplasticity in a composite including a non-transforming phase and a transforming phase by cycling the composite material through a phase transformation of the transforming phase while applying an external stress to the composite material is provided as is a method for inducing superplasticity in a titanium/titanium carbide composite. Also provided is a method for forming a part from a composite material including a transforming phase and a non-transforming phase by cycling the composite through a phase transformation of the transforming phase and shaping the composite material by applying an external stress to the composite material while the transforming phase is undergoing a phase transformation to form a finished article.
Abstract:
A method for producing an article including a refractory compound by infiltrating a preform with a liquid infiltrant and initiating a reaction between the preform and the liquid infiltrant to establish a reaction front which propagates in a direction opposite to the direction of flow of the liquid infiltrant is provided, as are articles prepared according to this method.