摘要:
An integrated, superconducting imaging sensor may be formed from a single, meandering nanowire. The sensor is capable of single-photon (or single-event) detection and imaging with ˜10 micron spatial resolution and sub-100-picosecond temporal resolution. The sensor may be readily scaled to large areas.
摘要:
An electronic platform comprising a substrate made of a ABO3 crystal (2) and at least one layer of a two-dimensional conducting sheet of carbon atoms (1) of a thickness between one and four atoms, characterized in that the conducting layer(s) is (are) placed on top of a face of the crystal whose orthogonal axis is at an angle up to 35° of the crystal's spontaneous polarization or c-axis. The invention achieves a sheet resistance lower than 1 Ω/square at temperatures higher than 77K.
摘要:
Operational characteristics of an extremely low resistance (“ELR”) film comprised of an ELR material may be improved by depositing a modifying material onto appropriate surfaces of the ELR film to create a modified ELR film. In some implementations of the invention, the ELR film may be in the form of a “c-film.” In some implementations of the invention, the ELR film may be in the form of an “a-b film,” an “a-film” or a “b-film.” The modified ELR film has improved operational characteristics over the ELR film alone or without the modifying material. Such operational characteristics may include operating in an ELR state at increased temperatures, carrying additional electrical charge, operating with improved magnetic properties, operating with improved mechanic properties or other improved operational characteristics. In some implementations of the invention, the ELR material is a mixed-valence copper-oxide perovskite, such as, but not limited to YBCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.
摘要:
A superconducting wire is provided which allows an appropriate critical current property to be obtained while maintaining high adhesive strength based on smoothness of a substrate surface that can be achieved without mechanical polishing or the like. A first intermediate layer 21 is formed by coating a material solution on a substrate 10 with a maximum height roughness Rz of 10 nm or more. This improves surface smoothness of the first intermediate layer 21, improves orientation and smoothness of a second intermediate layer 22 formed on the first intermediate layer 21, and increases a critical current in an oxide superconducting layer 30. Furthermore, the first intermediate layer 21 is formed of a plurality of thin coating film layers 21i. The thin coating film layers 21i are deposited such that an uppermost thin coating film layer has a smaller film thickness than a lowermost thin coating film layer and/or a material solution used for the uppermost thin coating film layer has a lower viscosity than a material solution used for the lowermost thin coating film layer. This improves the surface smoothness of the first intermediate layer 21.
摘要:
Provides a new non-oxide system compound material superconductor as an alternative of the perovskite type copper oxides superconductor.Layered compounds which are represented by chemical formula AF(TM)Pn (wherein, A is at least one selected from a group consisting of the second family elements in the long form periodic table, F is a fluorine ion, TM is at least one selected from a group of transition metal elements consisting of Fe, Ru, Os, Ni, Pd, and Pt, and Pn is at least one selected from a group consisting of the fifteenth family elements in the long form periodic table), having a crystal structure of ZrCuSiAs type (space group P4/nmm) and which become superconductors by doping trivalent cations or divalent anions.
摘要:
The invention herein is directed towards a method of making material exhibiting superconductivity characteristics which includes a laser processed region of a metal oxide crystal. The material has a transition temperature greater than a transition temperature of the metal oxide crystal, preferably greater than 140K. The transition temperature of the material may be considered greater than the transition temperature of the metal oxide crystal if the material has a transition temperature and the metal oxide crystal has no transition temperature. The present invention is also directed to a material which includes a laser processed strontium ruthenate crystal wherein the material has a greater oxygen content than the starting strontium ruthenate crystal. The present invention is also directed towards a method for manufacturing a material exhibiting superconductivity characteristics that includes providing a metal oxide crystal and laser ablating the metal oxide crystal and a material made by this process.
摘要:
Disclosed is a superconducting compound which has a structure obtained by partially substituting oxygen ions of a compound, which is represented by the following chemical formula; LnTMOPh [wherein Ln represents at least one element selected from Y and rare earth metal elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu), TM represents at least one element selected from transition metal elements (Fe, Ru, Os, Ni, Pd and Pt), and Pn represents at least one element selected from pnictide elements (N, P, As and Sb)] and has a ZrCuSiAs-type crystal structure (space group P4/nmm), with at least one kind of monovalent anion (F−, Cl− or Br−). The superconducting compound alternatively has a structure obtained by partially substituting Ln ions of the compound with at least one kind of tetravalent metal ion (Ti4+, Zr4+, Hf4+, C4+, Si4+, Ge4+, Sn4+ or Pb4+) or a structure obtained by partially substituting Ln ions of the compound with at least one kind of divalent metal ion (Mg2+, Ca2+, Sr2+ or Ba2+). The Tc of the superconducting compound is controlled in accordance with the ion substitution amount.
摘要:
A method of synthesizing a superconducting material, comprising mixing starting materials comprising magnesium, boron, silicon and carbon; heating the mixture of starting materials to a temperature in the range between 650° C. and 2000° C. to produce a material comprising magnesium boride doped with silicon carbide; and cooling the resulting material to a temperature below the critical temperature of the material to render the material capable of superconducting.
摘要:
A superconductor exemplarily described herein includes a superconducting material containing magnetic impurities and non-magnetic disorders formed in the superconducting material. The superconductor described herein is suitable for use in magnet applications and power transmission.
摘要:
A method for making a doped magnesium diboride powder is provided. The method includes coating a polymeric precursor on at least one of a plurality of particles of a first phase, where the first phase includes a magnesium diboride powder, where the polymeric precursor includes chemical elements yielding a second phase. The second phase includes one or more of a boride, a nitride, a carbide, an oxide, an oxy-boride, an oxy-nitride, an oxy-carbide, or combinations thereof. The method further includes forming a second phase coating onto at least one of the plurality of particles of the magnesium diboride powder.