摘要:
An erosion resistant protective structure for a turbine engine component comprises a shape memory alloy. The shape memory alloy includes nickel-titanium based alloys, indium-titanium based alloys, nickel-aluminum based alloys, nickel-gallium based alloys, copper based alloys, gold-cadmium based alloys, iron-platinum based alloys, iron-palladium based alloys, silver-cadmium based alloys, indium-cadmium based alloys, manganese-copper based alloys, ruthenium-niobium based alloys, ruthenium-tantalum based alloys, titanium based alloys, iron-based alloys, or combinations comprising at least one of the foregoing alloys. Also, disclosed herein are methods for forming the shape memory alloy onto turbine component.
摘要:
An erosion resistant protective structure for a turbine engine component comprises a shape memory alloy. The shape memory alloy includes nickel-titanium based alloys, indium-titanium based alloys, nickel-aluminum based alloys, nickel-gallium based alloys, copper based alloys, gold-cadmium based alloys, iron-platinum based alloys, iron-palladium based alloys, silver-cadmium based alloys, indium-cadmium based alloys, manganese-copper based alloys, ruthenium-niobium based alloys, ruthenium-tantalum based alloys, titanium based alloys, iron-based alloys, or combinations comprising at least one of the foregoing alloys. Also, disclosed herein are methods for forming the shape memory alloy onto turbine component.
摘要:
The present invention relates to a process for producing a superplastic aluminum alloy capable of being used for plastic working such as extrusion, forging and rolling. An object of the present invention is to provide an ingot-made high speed superplastic aluminum alloy in which superplasticity is developed at a strain rate higher than that of conventional static recrystallization type superplastic aluminum alloys, and a process for producing the same. The superplastic aluminum alloy of the invention has structure which is obtained by adding to a basic alloy containing from at least 4.0 to 15% by weight of Mg and from 0.1 to 1.0% by weight of one or more elements selected from the group consisting of Mm, Zr, V, W, Ti, Ni, Nb, Ca, Co, Mo and Ta, and further selective elements of Sc, Cu. Li, Sn, In and Cd, which contains from 0.1 to 4.0% by volume fraction of spheroidal precipitates of intermetallic compounds having a particle size from 10 to 200 nm, and which has a mean grain size from 0.1 to 10 .mu.m.
摘要:
The present invention relates to a method for increasing the useful life of a shape memory alloy (SMA) actuator, wherein the SMA element contracts on heating and elongates on cooling under an applied stress and that property is used as an actuating technique. More specifically, the present invention relates to the cooling aspect of the cycle and maintaining a martensite strain on the actuator SMA element at less than about 3% by limiting the upper stress on the element. In the most preferred embodiment, the element is a ribbon actuator prepared from a nickel-titanium SMA alloy.
摘要:
A complex part composed of rapidly solidified magnesium base metal alloy is produced by superplastic forming at a temperature ranging from 160.degree. C. to 275.degree. C. and at a rate ranging from 0.00021 m/sec to 0.00001 mm/sec, to improve the formability thereof and allow forming to be conducted at lower temperature. The rapidly solidified magnesium based alloy has a composition consisting essentially of the formula Mg.sub.bal Al.sub.a Zn.sub.b X.sub.c, wherein X is at least one element selected from the group consisting of manganese, cerium, neodymium, praseodymium and yttrium, "a" ranges from 0 to about 15 atom percent, "b" ranges from 0 to about 4 atom percent and "c" ranges from about 0.2 to 3 atom percent, the balance being magnesium and incidental impurities, with the proviso that the sum of aluminum and zinc present ranges from about 2 to 15 atom percent. Such an alloy contains fine grain size and finely dispersed magnesium-, aluminum- rare earth intermetallic phases. When formed, the part exhibits good corrosion resistance together with high ultimate tensile strength and good ductility at room temperature, which properties are, in combination, far superior to those of conventional magnesium alloys. The part is suitable for application as a structural member in helicopters, missiles and air frames where good corrosion resistance in combination with high strength and ductility is important.
摘要:
The present invention provides high-strength, heat resistant aluminum alloys having a composition represented by the general formula:Al.sub.a M.sub.b X.sub.d or Al.sub.a M.sub.b Q.sub.c X.sub.e(wherein M is at least one metal element selected from the group consisting of Cu, Ni, Co and Fe; Q is at least one metal element selected from the group consisting Mn, Cr, Mo, W, V, Ti and Zr; X is at least one metal element selected from the group consisting of Nb, Ta, Hf and Y; and a, b, c, d and e are atomic percentages falling within the following ranges: 45.ltoreq.a.ltoreq.90, 5.ltoreq.b.ltoreq.40, 0
摘要:
A process for enhancing the physical properties of superplastically formed and solution heat treated Aluminum-Lithium workpieces entails stretching near-net parts by from 2 to 10 percent at a specified temperature, followed by controlled aging.
摘要:
An ornament is disclosed, which is characterized in that a metallic alloy wire provided with a characteristic to show the superelastic effect at room temperature by making the metallic texture Austenite phase is overlapped on both ends and formed into an approximately circular ring shape to form a wound ring. A method of manufacturing the same claimed is that a prime wire of Ni--Ti type alloy is submitted to the cold processing rating from 20 to 50% to form a round or angular wire rod, said wire rod is wound up around a stick or pipe with a fixed outer diameter and submitted to the heat treatment at 300.degree. to 600.degree. C. under restraint of both ends of wire rod to form a wound ring of approximately circular ring shape and simultaneously the superelastic effect is given to said ring at room temperature by making the metallic texture thereof Austenite phase.
摘要:
Improved superplastic aluminum alloys are formulated to contain less than 0.05 weight percent each of iron and silicon based on the total weight of the superplastic aluminum alloy. Advantageously these two elements are present at levels of 0.03 weight percent or below, preferably 0.01 weight percent or below. Advantageous superplastic forming properties are achieved with these low iron, low silicon alloys. Further advantageous superplastic forming properties are achieved by subjecting aluminum alloys to a thermomechanical treatment followed by a rapid recrystallization-anneal treatment as, for instance, a recrystallization-anneal treatment utilizing a molten salt bath. When these formulations and processes are practiced alone, in combination with each other or together with cavitation supression improvements in superplastic forming of component parts are achieved.
摘要:
In a process for manufacturing a fine-grained recrystallized sheet of heat-treatable i.e. age-hardenable aluminum alloy containing an addition of at least one of the elements Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W amounting in total to 0.08-1.50%, the alloy is brought into a condition A in which the alloying elements that lead to age-hardening and the above mentioned additive elements are, at least for the greater part, in solid solution, following which in step B the incoherent hardening phases are precipitated out in a temperature range between the solvus T.sub.gps and the solvus T.sub.s, and in a subsequent step C the aluminides of the above mentioned elements are precipitated as a very dense uniform dispersion by heating in a temperature range between 300.degree. C. and T.sub.s -30.degree. C., whereby any deformation by rolling may take place between condition A and step C at temperatures not higher than T.sub.s -30.degree. C., and in which process the temperature of the sheet below a thickness or 2.5 xd does not exceed 200.degree. C., and the sheet at thickness d is heated to a recrystallization treatment D such that the heating rate is at least 20.degree. C./s until above the recrystallization threshold.