Abstract:
A multiple-layered cellular communication system particularly adapted to mobile phones and LAN type communication is provided with an overlaid arrangement of cell transceivers. By having this overlay, multiple service providers can provide a cooperative method of load sharing. The usage of the frequency spectrum can be improved and an advanced hand-off arrangement can be used to prevent or reduce the possibility of blocked calls due to cell saturation.
Abstract:
A method and apparatus for performing the square root function which first comprises approximating the short reciprocal of the square root of the operand. A reciprocal bias adjustment factor is added to the approximation and the result truncated to form a correctly biased short reciprocal. The short reciprocal is then multiplied by a predetermined number of the most significant bits of the operand and the product is appropriately truncated to generate a first root digit value. The multiplication takes place in a multiplier array having a rectangular aspect raio with the long side having a number of bits essentially as large as the number of bits required for the desired full precision root. The short side of the multiplier array has a number of bits slightly greater by several guard bits than the number of bits required for a single root digit value, which is also determined to be the number of bits in the short reciprocal. The root digit value is squared and the exact square is subtracted from the operand to yield an exact remainder. Succeeding new root digit values are determined by multiplying the short reciprocal by the appropriately shifted current remainder, selectively adding a digit bias adjustment factor and truncating the product. The root digit values are appropriately shifted and accumulated to form a partial root. The described steps are repeated to serially generate root digit values and partial roots with corresponding new exact remainders.
Abstract:
Transforming an integer comprises receiving the integer, where the integer can be expressed as a modular factorization. The modular factorization comprises one or more factors, where each factor has an exponent. The integer is expressed as a product of residues. A discrete logarithm of the integer is established from a sum corresponding to the product of residues. A value for an exponent of a factor is determined from the discrete logarithm. The integer is represented as the modular factorization comprising the one or more factors, where each factor has a value for the exponent.
Abstract:
Determining a table output of a table representing a hierarchical tree for an integer valued function includes determining an address from a table input. A subset of a memory is selected according to the address, where the memory represents the hierarchical tree and the subset represents a subtree of the hierarchical tree. Bit fields are selected from the subset, and bits are extracted from the bit fields. A table output is determined from the extracted bits.
Abstract:
An apparatus and method are disclosed for minimizing accumulated rounding errors in coefficient values in a lookup table for interpolating polynomials. Unlike prior art methods that individually round each polynomial coefficient of a function, the method of the present invention use a “ripple carry” rounding method to round each coefficient using information from the previously rounded coefficient. The “ripple carry” method generates rounded coefficients that significantly improve the total rounding error for the function.
Abstract:
The division and square root systems include a multiplier. The systems also include a multipartite table system, a folding inverter, and a complement inverter, each coupled to the multiplier. The division and square root functions can be performed using three scaling iterations. The system first determines both a first and a second scaling value. The first scaling value is a semi-complement term computed using the folding inverter to invert selected bits of the input. The second scaling value is a table lookup value obtained from the multipartite table system. In the first iteration, the system scales the input by the semi-complement term. In the second iteration, the resulting approximation is scaled by a function of the table lookup value. In the third iteration, the approximation is scaled by a value obtained from a function of the semi-complement term and the table lookup value. After the third iteration, the approximation is available for rounding.
Abstract:
A method and apparatus for performing the square root function which first comprises approximating the short reciprocal of the square root of the operand. A reciprocal bias adjustment factor is added to the approximation and the result truncated to form a correctly biased short reciprocal. The short reciprocal is then multiplied by a predetermined number of the most significant bits of the operand and the product is appropriately truncated to generate a first root digit value. The multiplication takes place in a multiplier array having a rectangular aspect ratio with the long side having a number of bits essentially as large as the number of bits required for the desired full precision root. The short side of the multiplier array has a number of bits slightly greater by several guard bits than the number of bits required for a single root digit value, which is also determined to be the number of bits in the short reciprocal. The root digit value is squared and the exact square is subtracted from the operand to yield an exact remainder. Succeeding new root digit values are determined by multiplying the short reciprocal by the appropriately shifted current remainder, selectively adding a digit bias adjustment factor and truncating the product. The root digit values are appropriately shifted and accumulated to form a partial root. The described steps are repeated to serially generate root digit values and partial roots with corresponding new exact remainders.