摘要:
A method and communication system for selecting a mode for encoding data for transmission in a wireless communication channel between a transmit unit and a receive unit. The data is initially transmitted in an initial mode and the selection of the subsequent mode is based on a selection of first-order and second-order statistical parameters of short-term and long-term quality parameters. Suitable short-term quality parameters include signal-to-interference and noise ratio (SINR), signal-to-noise ratio (SNR), power level and suitable long-term quality parameters include error rates such as bit error rate (BER) and packet error rate (PER). The method of the invention can be employed in Multiple Input Multiple Output (MIMO), Multiple Input Single Output (MISO), Single Input Single Output (SISO) and Single Input Multiple Output (SIMO) communication systems to make subsequent mode selection faster and more efficient. Furthermore the method can be used in communication systems employing various transmission protocols including OFDMA, FDMA, CDMA, TDMA.
摘要:
The present invention provides a method for controlling a communication parameter in a channel through which data is transmitted between a transmit unit with M transmit antennas and a receive unit with N receive antennas by selecting from among proposed mapping schemes an applied mapping scheme according to which the data is converted into symbols and assigned to transmit signals TSp, p=1 . . . M, which are transmitted from the M transmit antennas. The selection of the mapping scheme is based on a metric; in one embodiment the metric is a minimum Euclidean distance dmin,rx of the symbols when received, in another embodiment the metric is a probability of error P(e) in the symbol when received. The method can be employed in communication systems using multi-antenna transmit and receive units of various types including wireless systems, e.g., cellular communication systems, using multiple access techniques such as TDMA, FDMA, CDMA and OFDMA.
摘要翻译:本发明提供了一种用于控制信道中的通信参数的方法,通过该通道参数在具有M个发送天线的发送单元和具有N个接收天线的接收单元之间通过其从所提供的映射方案中选择应用的映射方案来传送数据, 数据被转换成符号并被分配给发送信号TS P,P = 1。 。 。 M,其从M个发射天线发射。 映射方案的选择基于度量; 在一个实施例中,度量是在接收时符号的最小欧几里德距离d x min,r x N,在另一个实施例中,度量是在接收时符号中的错误概率P(e)。 该方法可以用于使用各种类型的多天线发射和接收单元的通信系统,包括使用诸如TDMA,FDMA,CDMA和OFDMA之类的多种接入技术的无线系统,例如蜂窝通信系统。
摘要:
The present invention includes a cellular wireless re-use communication system. The communication system includes a base transceiver station cluster. The base transceiver station cluster includes a first plurality of base station transceivers and a plurality of common channel areas. Each common channel area includes a unique set of common assigned channels. Each common channel area further includes at least one subscriber unit. Each subscriber unit within the common channel area receives information signals from a second plurality of base station transceivers through one of the set of common assigned channels that correspond to the common channel area. The common assigned channel includes common transmission characteristics. The common transmission characteristic can include a transmission frequency, a transmission time or a transmission code. The second plurality of base station transceivers can be physically located within the same common channel area that a corresponding subscriber unit receiving information from the second plurality of base station transceivers is located. Alternatively, at least one of the second plurality of base station transceivers can be physically located outside of the common channel area that a corresponding subscriber unit receiving information from the second plurality of base station transceivers is located.
摘要:
The invention includes an apparatus and a method for transmitting sub-protocol data units from a plurality of base transceiver stations to a subscriber unit. The method includes estimating time delays required for transferring the sub-protocol data units between a scheduler unit and each of the base transceiver stations. The method further includes the scheduler unit generating a schedule of time slots and frequency blocks in which the sub-protocol data units are to be transmitted from the base transceiver stations to the subscriber unit. The time delays are used to generate the schedule. The time delays can be used to generate a look ahead schedule that compensates for the timing delays of the sub-protocol data units from the scheduler unit to the base transceiver stations. The sub-protocol data units are wirelessly transmitted from the base transceiver stations to the subscriber unit according to the schedule. The time delays can be estimated by time-stamping sub-protocol data units before sub-protocol data units are transferred from the scheduler unit to the base transceiver stations, and estimating the time delays by comparing the times the sub-protocol data units are actually received by the base transceiver stations with the time-stamping.
摘要:
The present invention provides a diversity transmission system. The diversity transmission system includes a diversity transmitter receiving incoming symbols. The diversity transmitter includes at least one transmitter antenna transmitting a plurality of multi-carrier modulated signals. Each multi-carrier-modulated signal includes a corresponding processed symbol sub-block stream. Each symbol of the processed symbol sub-block stream is based on a linear transform of a plurality of incoming symbols. The diversity transmission system further includes a diversity receiver. The diversity receiver includes at least one receiver antenna receiving the plurality of multi-carrier modulated signals after the multi-carrier modulated signals having been modified by transmission channels between the transmitter antennas and the receiver antenna. The diversity receiver further includes at least one multi-carrier demodulator for demodulating the received multi-carrier modulated signals and generating a demodulated symbol stream. A symbol-processing unit receives the demodulated symbol stream and generates a stream of outgoing symbols. The invention also includes a diversity transmitter. The diversity transmitter includes a symbol-processing unit for receiving a stream of incoming symbols and generating a plurality of processed symbol streams. The processed symbol streams are based on linear transforms of the incoming symbols. A plurality of multi-carrier modulators generate a plurality of multiple-carrier modulated signals. Each multi-carrier modulator receives a corresponding processed symbol stream and generates a multiple-carrier-modulated signal based on the corresponding processed symbol stream.
摘要:
A method is disclosed for using feedback signals (32) to optimize the directional properties of information signals (19) with respect to their intended receivers (16), where information signals (19) are applied to the transmitting elements (14) of a transmitting antenna array (12). Feedback signals (32) generated at receivers (16) by probing signals (17) are monitored, and the weight matrix with which signals (17) are distributed among array elements (14) is adjusted according to feedback signals (32) to minimize cross-talk. Information signals (18) transmitted according to an optimized weight matrix will also have reduced cross-talk. A weight matrix may be optimized by perturbing an initial weight matrix, calculating an error function from the feedback signals (32) produced by each perturbed weight matrix, estimating the direction of an extremum from the error functions, and adjusting the initial weight matrix in that direction. Alternatively, a gain matrix for the transmitting array may be explicitly determined by sequentially exciting each transmitting element (14) and measuring the resultant feedback signals (32). These are then used to calculate the weight matrix that eliminates cross-talk.
摘要:
The invention described herein relates generally to the field of signal processing for signal reception and parameter estimation. The invention has many applications such as frequency estimation and filtering, and array data processing, etc. For convenience, only applications of this invention to sensor array processing are described herein. The array processing problem addressed is that of signal parameter and waveform estimation utilizing data collected by an array of sensors. Unique to this invention is that the sensor array geometry and individual sensor characteristics need not be known. Also, the invention provides substantial advantages in computations and storage over prior methods. However, the sensors must occur in pairs such that the paired elements are identical except for a displacement which is the same for all pairs. These element pairs define two subarrays which are identical except for a fixed known displacement. The signals must also have a particular structure which in direction-of-arrival estimation applications manifests itself in the requirement that the wavefronts impinging on the sensor array be planar. Once the number of signals and their parameters are estimated, the array configurations can be determined and the signals individually extracted. The invention is applicable in the context of array data processing to a number of areas including cellular mobile communications, space antennas, sonobuoys, towed arrays of acoustic sensors, and structural analysis.
摘要:
The present invention provides methods and apparatus for implementing spatial multiplexing in conjunction with the one or more multiple access protocols during the broadcast of information in a wireless network. A subscriber unit for use in a cellular system is disclosed. The subscriber unit includes: spatially separate receivers, a spatial processor, and a combiner. The spatially separate receivers receive the assigned channel composite signals resulting from the spatially separate transmission of the subscriber downlink datastream(s). The spatial processor is configurable in response to a control signal transmitted by the base station to separate the composite signals into estimated substreams based on information obtained during the transmission of known data patterns from at least one of the base stations. The spatial processor signals the base stations when a change of a spatial transmission configuration is required. The combiner combines the estimated substreams into a corresponding subscriber datastream.
摘要:
A wireless communications adapts its mode of operation between spatial multiplexing and non-spatial multiplexing in response to transmission-specific variables. An embodiment of a wireless communications system for transmitting information between a base transceiver station and a subscriber unit includes mode determination logic. The mode determination logic is in communication with the base transceiver station and the subscriber unit. The mode determination logic determines, in response to a received signal, if a subscriber datastream should be transmitted between the base transceiver station and the subscriber unit utilizing spatial multiplexing or non-spatial multiplexing. In an embodiment, the mode determination logic has an input for receiving a measure of a transmission characteristic related to the received signal. In an embodiment, the mode determination logic includes logic for comparing the measured transmission characteristic to a transmission characteristic threshold and for selecting one of spatial multiplexing and non-spatial multiplexing in response to the comparison of the measured transmission characteristic to the transmission characteristic threshold. In an embodiment, the transmission characteristic includes at least one of delay spread, post-processing signal-to-noise ratio, cyclical redundancy check (CRC) failure, residual inter-symbol interference, mean square error, coherence time, and path loss. By adapting the mode of operation in response to transmission-specific variables, the use of spatial multiplexing can be discontinued in unfavorable conditions. Additionally, because the wireless communications system can adapt its mode of operation between spatial multiplexing and non-spatial multiplexing, the communications system is compatible with both subscriber units that support spatial multiplexing and subscriber units that do not support spatial multiplexing.
摘要:
A method and communication system for selecting a mode for encoding data for transmission in a wireless communication channel between a transmit unit and a receive unit. The data is initially transmitted in an initial mode and the selection of the subsequent mode is based on a selection of first-order and second-order statistical parameters of short-term and long-term quality parameters. Suitable short-term quality parameters include signal-to-interference and noise ratio (SINR), signal-to-noise ratio (SNR), power level and suitable long-term quality parameters include error rates such as bit error rate (BER) and packet error rate (PER). The method of the invention can be employed in Multiple Input Multiple Output (MIMO), Multiple Input Single Output (MISO), Single Input Single Output (SISO) and Single Input Multiple Output (SIMO) communication systems to make subsequent mode selection faster and more efficient. Furthermore the method can be used in communication systems employing various transmission protocols including OFDMA, FDMA, CDMA, TDMA.