Abstract:
A spark plug 1 includes a housing 2, an insulator 3, a center electrode 4 held inside the insulator 3 such that a distal end portion 41 protrudes, a ground electrode 5 including a standing portion 51 and an opposing portion 52, and a guide member 22 that has a guide surface 221 facing the standing portion 51 of the ground electrode 5 and functions to guide a flow of an air-fuel mixture in a combustion chamber of an internal combustion engine to a spark discharge gap G formed between the center electrode 4 and the opposing portion 52 of the ground electrode 5. The opposing portion 52 of the ground electrode 5 has an opposing surface 521 that opposes the center electrode 4, a back surface 522 on the opposite axial side to the opposing surface 521, and a pair of side surfaces 523 and 524 that connect the opposing surface 521 and the back surface 522. Of the pair of side surfaces 523 and 524, at least the side surface 523 on the guide member 22 side is formed so as to make an obtuse angle with the opposing surface 521.
Abstract:
A spark plug includes a center electrode, an insulator holding the center electrode inserted thereinto, a housing holding the insulator inserted thereinto and a ground electrode joined to the housing so as to form a spark discharge gap with the center electrode . The center electrode includes a core member and a cover layer covering a surface of the core member. The core member includes a large-diameter portion made of a material having a thermal conductivity higher than that of the cover layer, a small-diameter portion extending from the large-diameter portion toward a distal end side of the core member, and a connecting portion connecting the large-diameter portion to the small-diameter portion. The cover layer is made of a material having a linear expansion coefficient lower than that of the core member, and covers between at least part of the connecting portion and a distal end of the small-diameter portion.
Abstract:
A spark plug for internal combustion engines is provided, where the spark plug includes a cylindrical housing, a cylindrical insulation porcelain part, a center electrode, and a ground electrode. The insulation porcelain is housed in the housing and the center electrode is held inside the insulation porcelain. The ground electrode protrudes from a top end portion of the housing. A spark discharge gap is left between the ground and center electrodes. Further, first to third projections are formed on the top end portion. The first projection is opposed to the ground electrode with the center electrode therebetween. The second projection is closer to the ground electrode than to the first projection. The third projection is closer to the first projection than to the ground electrode.
Abstract:
An ignition apparatus is provided with a Zener diode as a limiter device, which limits a primary voltage of an ignition coil to be less than a Zener voltage, and a switching circuit, which prohibits a limiter function of the Zener diode at a start of discharge and switches the limiter device to perform the limiter function for a predetermined time period following the start of discharge. A secondary voltage is limited to be more than a secondary limit value. Even when blowout arises in discharging, re-discharging is avoided from arising immediately after the blowout and exhaustion of a spark plug caused by repetition of discharging is avoided.
Abstract:
A spark plug has a housing, an insulator, a central electrode and a ground electrode. A projection part is formed projecting radially from the housing. The spark plug has a structure which satisfies a relationship of t2/t1≤0.85, s1≤0.5, and s1≥1.05−t2/t1. A leg part of the insulator has a first end and a second end in an axial direction thereof. The second end is located opposite to the first end in the axial direction. In the relationship, t1 represents a first radial thickness of the first end in a radial direction of the leg part, t2 represents a center radial thickness in the radial direction at a middle position of the leg part, and s1 represents a first gap width in the radial direction of the housing between the projection part of the housing and the first end of the leg part.
Abstract:
An ignition plug for an internal combustion engine includes an electrode protrusion that protrudes from an electrode base material of a ground electrode toward a discharge gap. The electrode protrusion has a base part that is integrated with the electrode base material and a cover part that is joined to the base part and faces the discharge gap. The base part has an end surface facing a protrusion direction of the base part and a side peripheral surface. An outer edge of the end surface has a curved surface. The cover part is formed from a precious metal or a precious metal alloy having a lower linear expansion coefficient than that of a material for forming the base part and covers at least a part of the side peripheral surface and the end surface of the base part. While the ignition plug is attached to an internal combustion engine and the electrode protrusion is heated and then cooled, a projection is formed on an outer surface of a portion covering the side peripheral surface of the base part.
Abstract:
A spark plug includes a tubular housing, a tubular insulator retained in the housing, a center electrode secured in the insulator with a distal end portion of the center electrode protruding outside the insulator, and an annular ground electrode fixed to a distal end of the housing. The housing has, at the distal end thereof, a small-inner diameter portion that has a smaller inner diameter than other portions of the housing. The annular ground electrode is arranged on a distal end surface of the small-inner diameter portion of the housing so that an inner circumferential surface of the ground electrode faces an outer circumferential surface of the distal end portion of the center electrode through a spark gap formed therebetween. The outer diameter of the ground electrode is less than the outer diameter of the distal end surface of the small-inner diameter portion of the housing.
Abstract:
A spark plug includes a tubular housing, a tubular insulator retained in the housing, a center electrode secured in the insulator, and a ground electrode provided at a distal end of the housing. The housing has a seat portion formed on its inner periphery. The insulator has a distal portion, a proximal portion, and a shoulder formed on an outer periphery of the insulator between the distal and proximal portions. The shoulder is arranged to seat on the seat portion of the housing with an annular packing interposed therebetween. On an inner peripheral surface of the seat portion of the housing which faces an outer peripheral surface of the distal portion of the shoulder, there are formed uneven portions that are arranged in a circumferential direction of the spark plug. Each of the uneven portions consists of a protrusion and a recess that adjoin each other in the circumferential direction.
Abstract:
A spark plug for an internal combustion engine includes a tubular housing, a tubular insulator, a center electrode, a ground electrode and a guide member. The guide member is configured to guide the flow of an air-fuel mixture in a combustion chamber of the engine to a spark gap formed between the center electrode and the ground electrode. Moreover, in the spark plug, the following dimensional relationships are satisfied: b≧−67.8×(a/D)+27.4; b≦−123.7×(a/D)+64.5; −0.4≦(a/D)≦0.4; and 0°≦b≦90°. Further, with an oblique angle θ being in the range of 0 to 30°, the following dimensional relationship is also satisfied: 0.8≦r/R≦1. Consequently, the spark plug can secure, with a simple configuration, a stable ignition capability regardless of the mounting posture of the spark plug to the engine.
Abstract:
An ignition system is provided, which can restrict decreasing of constant-voltage duration of a spark plug and effectively prevents the occurrence of an accidental fire in an engine. A typical ignition system includes a secondary coil having one end connected to a positive side of a battery via a low-voltage side path and the other end connected to a center electrode via a connecting path which connects the secondary coil and the spark plug. A constant-voltage path having a grounded end is connected to the connecting path. A block diode is arranged between the secondary coil and a point where the constant-voltage path is connected with the connecting path. A Zener diode is disposed within the constant-voltage path. Each anode of the block diode and the Zener diode is mutually connected.