摘要:
Method and apparatus for using a plurality of correlators to improve an estimate of direct signal arrival time by identifying features of a correlation function at and adjacent to the correlation peak. In a first embodiment, the errors in location of the center point of a correlation function R(.tau.), formed by the incoming composite signal and a stored copy of the expected signal, are assumed to be strongly correlated for narrow sample spacing and wide sample spacing of the correlation function. In a second embodiment, multipath signal strengths and phases are estimated, using multiple sampling of the correlation function R(.tau.). This approach assumes that path delays of the direct signal and of the multipath signals can be determined separately. Path delays can be determined by any of at least three approaches: (1) identification of slope transition points in the correlation function; (2) Cepstrum processing of the received signal, using Fourier transform analysis; and (3) use of a grid of time points on the correlation function domain, and identification of time values, associated with certain solution parameters of the least mean squares analysis that have the largest absolute values, as times of arrival of the direct and multipath signals. Separate identification of multipath time delays reduces the least mean squares analysis to a linear problem. A modified signal is constructed, with the multipath signal(s) approximately removed from the incoming composite signal. This modified signal allows a better estimate of the arrival time of the direct signal.
摘要:
Method and apparatus for reducing or cancelling impulse noise from a signal containing noise. The desired noise-free signal is assumed to have a representative frequency .omega..sub.3, but may have a range of frequencies adjacent to this frequency, and is assumed to have substantially zero amplitude for all frequencies .omega. .omega..sub.2, where .omega..sub.1
摘要:
In a Loran-C message communication system a method of obviating errors in navigation locking caused by sampling reception at the conventional symmetrical pulse modulation time intervals in advance of and in delay from the normal transmission interval, through rendering the pulse modulation assymetrical to a degree that compensates for different cycle amplitudes at sampling points above and below the desired sixth zero crossing used for navigation position determination.
摘要:
Method and apparatus for reducing radio frequency interference (RFI) using a dual-element patch antenna [10]. The antenna possesses two antenna elements [13, 14] having distinct radiation patterns. Either element may be independently selected using a DC bias voltage. Diodes [20] connected to the elements serve to disable one element when the other is selected. In one selected mode, a nominal radiation pattern provides a broad, hemispherical shaped sensitivity that is designed for acquiring and tracking all navigation satellites above the horizon. This nominal radiation pattern, however, is susceptible to interference that is present near or below the horizon. The second selectable radiation pattern of the dual-element antenna has comparatively higher gain toward zenith, and lower gain at and below the horizon to mitigate interference. This combination of features is packaged in a single antenna unit that can be a direct replacement for existing antennas. The dual-element antenna unit has a low vertical profile and is suitable for mounting on high-speed moving vehicles.
摘要:
Method and apparatus for using a plurality of correlators to improve the estimate of direct signal arrival time by identifying detailed features of a correlation function at and adjacent to the correlation peak. The errors in location of the center point of a correlation function R(.tau.), formed by the received signal and a stored copy of the expected signal, are assumed to be strongly correlated for narrow sample spacing and wide sample spacing of the correlation function. Alternatively, the multipath signal strengths and phases are estimated by a least mean squares analysis, using multiple sampling of a correlation function of an expected signal and an arriving composite signal that includes the direct signal and one or more multipath signals. Times of arrival or path delays of the direct signal and the multipath signals are determined separately. Path delays can be determined by at least three approaches: (1) identification of slope transition points in the correlation function R(.tau.); (2) Cepstrum processing of the received signal, using Fourier transform and inverse transform analysis; and (3) use of a grid of time shift points for the correlation function, and identification of time shift values, associated with certain solution parameters for a least mean squares analysis that have the largest absolute values, as times of arrival of the direct and multipath signals. Separate identification of path delays reduces the least mean squares analysis to a solvable linear problem. A modified received signal is constructed, with multipath signal(s) approximately removed.