摘要:
Described are preferred processes for preparing heterocycles having one or more nitrogen and/or oxygen heteroatoms, utilizing a 1,3-dihalopropene as an effective 3-carbon fragment. Preferred processes yield pyridines, quinolines, oxazoles, pyrimidines and pyrazoles, depending upon the other reactant or reactants utilized with the 1,3-dihalopropene.
摘要:
Described are preferred processes for preparing 2-halo-5-substituted pyridine compounds. Preferred processes can be conducted in a one-step, one-pot fashion, and involve the reaction of a formamide and a halogenating agent with a nitrile such as cis-2-pentenonitrile or with a combination of reactants including an aldehyde such as n-propionaldehyde and a nitrile or an amide. Preferred processes provide for convenient and advantageous preparations of 2-chloro-5-methylpyridine, which serves as an intermediate to important insecticidal compounds.
摘要:
The present application relates to processes for producing linear polyvinylpyridines without the use of hazardous solvents, and in a manner that allows control over the rate of heat generated by the reaction and the temperature of the reactor vessel. The processes involve the use of an initiator to initiate polymerization of vinylpyridine monomers in water. Processes of the invention provide good reaction rates and conversions, and are particularly advantageous in achieving control of the molecular weights of the final product polymers.
摘要:
Methods are provided for improving production of 3,5-diethyl-1,2-dihydro-1-phenyl-2-propylpyridine (DHP). In one illustrative embodiment, the methods involve controlling the rate of reaction and temperature of the reaction during formation of DHP. In another illustrative embodiment, the methods involve neutralizing the acid catalyst subsequent to DHP formation.
摘要:
Described are preferred processes for preparing heterocycles having one or more nitrogen and/or oxygen heteroatoms, utilizing a 1,3-dihalopropene as an effective 3-carbon fragment. Preferred processes yield pyridines, quinolines, oxazoles, pyrimidines and pyrazoles, depending upon the other reactant or reactants utilized with the 1,3-dihalopropene.