Abstract:
A process for purifying a crude furan 2,5-dicarboxylic acid composition (cFDCA) by hydrogenation of a FDCA composition dissolved in a hydrogenation solvent such as water, and hydrogenating under mild conditions, such as at a temperature within a range of 130° C. to 225° C. by contacting the solvated FDCA composition with hydrogen in the presence of a hydrogenation catalyst under a hydrogen partial pressure within a range of 10 psi to 900 psi. A product FDCA composition is produced having a low amount of tetrahydrofuran dicarboxylic acid, a low b*, and a low amount of 5-formyl furan-2-carboxylic acid (FFCA).
Abstract:
A process for purifying a crude furan 2,5-dicarboxylic acid composition (cFDCA) by hydrogenation of a FDCA composition dissolved in a hydrogenation solvent such as water, and hydrogenating under mild conditions, such as at a temperature within a range of 130° C. to 225° C. by contacting the solvated FDCA composition with hydrogen in the presence of a hydrogenation catalyst under a hydrogen partial pressure within a range of 10 psi to 900 psi.
Abstract:
The present invention relates to a method for the manufacture of cyclododecasulfur, a cyclic sulfur allotrope wherein the number of sulfur (S) atoms in the allotrope's homocyclic ring is 12. The method includes reacting a metallasulfur derivative with an oxidizing agent in a reaction zone to form a cyclododecasulfur-containing reaction mixture.
Abstract:
A process for purifying a crude furan 2,5-dicarboxylic acid composition (cFDCA) by hydrogenation of a FDCA composition dissolved in a hydrogenation solvent such as water, and hydrogenating under mild conditions, such as at a temperature within a range of 130° C. to 225° C. by contacting the solvated FDCA composition with hydrogen in the presence of a hydrogenation catalyst under a hydrogen partial pressure within a range of 10 psi to 900 psi. A product FDCA composition is produced having a low amount of tetrahydrofuran dicarboxylic acid, a low b*, and a low amount of 5-formyl furan-2-carboxylic acid (FFCA).
Abstract:
A process for recovering a concentrated sulfopolyester dispersion is provided comprising routing an aqueous dispersion comprising a water-dispersible sulfopolyester to a sulfopolyester concentration zone to remove water from the aqueous dispersion to produce the concentrated sulfopolyester dispersion and a recovered water stream; wherein the sulfopolyester concentration zone comprises at least one ultrafiltration membrane.
Abstract:
Disclosed is an oxidation process to produce a crude carboxylic acid product carboxylic acid product. The process comprises oxidizing a feed stream comprising at least one oxidizable compound to generate a crude carboxylic acid slurry comprising furan-2,5-dicarboxylic acid (FDCA) and compositions thereof. Also disclosed is a process to produce a dry purified carboxylic acid product by utilizing various purification methods on the crude carboxylic acid.
Abstract:
This invention relates to hydrogenation processes for making cyclohexane compounds. More specifically, this invention relates to hydrogenation processes in the presence of tertiary amide solvent compounds, as well as compositions that can result from such processes. The invention thus provides processes for making cyclohexanecarboxylic acid compounds and processes for making hydroxymethylcyclohexane compounds.
Abstract:
This invention relates to hydrogenation processes for making cyclohexane compounds. More specifically, this invention relates to hydrogenation processes in the presence of tertiary amide solvent compounds, as well as compositions that can result from such processes. The invention thus provides processes for making cyclohexanecarboxylic acid compounds and processes for making hydroxymethylcyclohexane compounds.
Abstract:
A process for isolating 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCD) by (a) crystallizing TMCD in a crystallization zone to generate a slurry comprising TMCD solids and (b) isolating the TMCD solids in a solid liquid separation zone to generate a wet cake and a mother liquor stream.
Abstract:
A process for purifying a crude furan 2,5-dicarboxylic acid composition (cFDCA) by hydrogenation of a FDCA composition dissolved in a hydrogenation solvent such as water, and hydrogenating under mild conditions, such as at a temperature within a range of 130° C. to 225° C. by contacting the solvated FDCA composition with hydrogen in the presence of a hydrogenation catalyst under a hydrogen partial pressure within a range of 10 psi to 900 psi. A product FDCA composition is produced having a low amount of tetrahydrofuran dicarboxylic acid, a low b*, and a low amount of 5-formyl furan-2-carboxylic acid (FFCA).