Abstract:
Iron-based homogeneous catalysts, supported by pincer ligands, are employed in the transfer hydrogenation of esters using C2-C12 alcohols as sacrificial hydrogen donors to produce corresponding alcohols from the esters. No external H2 pressure is required. The reaction can be carried out under ambient pressure.
Abstract:
Disclosed is a process for the extractive recovery of a homogeneous ruthenium catalyst from the reaction product of the hydrogenation of glycolic acid, glycolate esters, and/or glycolic acid oligomers with an extractant comprising a hydrophobic solvent and an optional hydrophilic solvent. The ruthenium catalyst, which can include 1,1,1-tris(diaryl- or dialkylphosphinomethyl)alkane ligands, can be recovered from the hydrophobic extract phase by back extraction with a hydrophilic solvent and recycled to a process for the preparation of ethylene glycol by the hydrogenation of glycolic acid and glycolic acid derivatives.
Abstract:
A process for the transesterification of methyl-2-ethylhexanoate with triethylene glycol to produce triethylene glycol di-2-ethylhexanoate is provided. In the process, methyl-2-ethylhexanoate is combined with triethylene glycol to form a first mixture. The first mixture is heated in the presence of a catalyst to form a second mixture comprising methanol and triethylene glycol di-2-ethylhexanoate. Methanol is separated from the second mixture to yield triethylene glycol di-2-ethylhexanoate. Na2CO3, Cs2CO3, K2CO3, Rb2CO3, sodium methoxide or titanium isopropoxide are suitable catalysts.
Abstract:
A process for the transesterification of methyl-2-ethylhexanoate with triethylene glycol to produce triethylene glycol di-2-ethylhexanoate is provided. In the process, methyl-2-ethylhexanoate is combined with triethylene glycol to form a first mixture. The first mixture is heated in the presence of a catalyst to form a second mixture comprising methanol and triethylene glycol di-2-ethylhexanoate. Methanol is separated from the second mixture to yield triethylene glycol di-2-ethylhexanoate. Na2CO3, Cs2CO3, K2CO3, Rb2CO3, sodium methoxide or titanium isopropoxide are suitable catalysts.
Abstract:
A process for preparing a variety of secondary and tertiary alkyl formate esters via the coupling of methanol and secondary (or tertiary) alcohols. Iron-based catalysts, supported by pincer ligands, are employed to produce these formate esters in high yields and unprecedentedly high selectivities (>99%). Remarkably, the coupling strategy is also applicable to bulkier tertiary alcohols, which afford corresponding tertiary formate esters in moderately high yields and high selectivities.
Abstract:
The present invention relates to a method for the manufacture of cyclododecasulfur, a cyclic sulfur allotrope wherein the number of sulfur (S) atoms in the allotrope's homocyclic ring is 12. The method includes reacting a metallasulfur derivative with an oxidizing agent in a reaction zone to form a cyclododecasulfur-containing reaction mixture.
Abstract:
This invention relates to hydrogenation processes for making cyclohexane compounds. More specifically, this invention relates to hydrogenation processes in the presence of tertiary amide solvent compounds, as well as compositions that can result from such processes. The invention thus provides processes for making cyclohexanecarboxylic acid compounds and processes for making hydroxymethylcyclohexane compounds.
Abstract:
This invention relates to hydrogenation processes for making cyclohexane compounds. More specifically, this invention relates to hydrogenation processes in the presence of tertiary amide solvent compounds, as well as compositions that can result from such processes. The invention thus provides processes for making cyclohexanecarboxylic acid compounds and processes for making hydroxymethylcyclohexane compounds.
Abstract:
Processes for recovering dialkyl terephthalates. The processes can include exposing a polyester composition to one or more glycols to depolymerization conditions thereby providing one or more depolymerization products. The one or more glycols can include diethylene glycol (DEG), triethylene glycol (TEG), 1,4-cyclohexanedimethanol (CHDM), poly(ethylene glycol) (PEG), neopentyl glycol (NPG), propane diol (PDO), butanediol (BDO), 2-methyl-2,4-pentanediol (MP diol), poly(tetramethylene ether)glycol (PTMG), or a combination thereof. The one or more depolymerization products can be exposed to an alcoholysis process to recover dialkyl terephthalate. Optionally, ethylene glycol (EG) produced from the depolymerization process can be recovered and re-used in a subsequent dialkyl terephthalate recovery or other process.
Abstract:
Processes for recovering dialkyl terephthalates. The processes can include exposing a polyester composition to one or more glycols to depolymerization conditions thereby providing one or more depolymerization products. The one or more depolymerization products can be exposed to an alcoholysis process to recover dialkyl terephthalate. Optionally, the one or more glycols can be recycled and re-used in a subsequent dialkyl terephthalate recovery or other process.