Abstract:
A knotless suture fastener installation system for securing medical devices such as cardiac implants. The knotless suture fasteners may be spring-biased so as to grip onto sutures passed therethrough. The system includes a fastener deployment tool with a proximal handle and a distal shaft to which a fastener cartridge attaches. A plurality of disposable cartridges are sequentially attached to the end of the deployment tool and used to secure the medical implant one fastener at a time. The deployment tool may also cut the sutures being fastened.
Abstract:
Disclosed herein are annular prosthetic devices, such as annuloplasty rings, that include suture clips integrated into or mounted within an annular frame. The clips can quickly secure to sutures to obviate the need to tied knots in the sutures during implantation. Embodiments comprise an annular frame having an open central region and a plurality of suture clips spaced angularly apart around the frame. Each of the suture clips can comprise two opposing tabs that extend toward each other such that the suture clip forms a gripping region between ends of the tabs and the gripping region is configured to grip a suture inserted through the suture clip between the two tabs. The annular frame and the plurality of suture clips can be formed from a single piece of flat material with the suture clip tabs being formed by laser cutting the piece of flat material, or the suture clips can be movable along a track formed in the annular frame.
Abstract:
A device for deploying a suture clip onto a suture can include a proximal handle portion that includes an actuation mechanism. The device can also include an outer shaft defining an inner lumen. A crimping assembly can be at least partially disposed within a distal end of the outer shaft. The crimping assembly can include a plurality of crimping members configured to receive and radially compress a suture clip. The actuating mechanism can be configured to move the plurality of crimping members radially inwardly from a first position, where the crimping members are configured to receive a suture clip, to a second position where the plurality of crimping members are configured to radially compress the suture clip, causing the suture clip to plastically deform and become secured around one or more sutures.
Abstract:
A knotless suture fastener installation system for securing medical devices such as cardiac implants. The knotless suture fasteners may be spring-biased so as to grip onto sutures passed therethrough. The system includes a fastener deployment tool with a proximal handle and a distal shaft to which a fastener cartridge attaches. A plurality of disposable cartridges are sequentially attached to the end of the deployment tool and used to secure the medical implant one fastener at a time. The deployment tool may also cut the sutures being fastened.
Abstract:
A multiple-fire securing device includes a hollow outer shaft, a reloader, a reloader movement assembly, a rail, and securing structures each defining an inner securing orifice. The reloader longitudinally moves within the outer shaft and has a distal end shaped to temporarily contact one of the securing structures. The rail is disposed within the reloader and has an installing location. The securing structures are disposed on the rail. The reloader movement assembly moves the reloader longitudinally in a distal direction to deliver a first securing structure to the installing location from a first proximal position and moves the reloader proximally away from the installing location without the first securing structure to a position in which the distal end of the reloader temporarily contacts a second one of the securing structures. The second and successive securing structures are moved one at a time to the installing location.
Abstract:
A knotless suture fastener installation system for securing medical devices such as cardiac implants. The knotless suture fasteners may be spring-biased so as to grip onto sutures passed therethrough. The system includes a fastener deployment tool with a proximal handle and a distal shaft to which a fastener cartridge attaches. A plurality of disposable cartridges are sequentially attached to the end of the deployment tool and used to secure the medical implant one fastener at a time. The deployment tool may also cut the sutures being fastened.
Abstract:
A knotless suture fastener installation system for securing medical devices such as cardiac implants. The knotless suture fasteners may be spring-biased so as to grip onto sutures passed therethrough. The system includes a fastener deployment tool with a proximal handle and a distal shaft to which a fastener cartridge attaches. A plurality of disposable cartridges are sequentially attached to the end of the deployment tool and used to secure the medical implant one fastener at a time. The deployment tool may also cut the sutures being fastened.
Abstract:
Disclosed herein are annular prosthetic devices, such as annuloplasty rings, that include suture clips integrated into or mounted within an annular frame. The clips can quickly secure to sutures to obviate the need to tied knots in the sutures during implantation. Embodiments comprise an annular frame having an open central region and a plurality of suture clips spaced angularly apart around the frame. Each of the suture clips can comprise two opposing tabs that extend toward each other such that the suture clip forms a gripping region between ends of the tabs and the gripping region is configured to grip a suture inserted through the suture clip between the two tabs. The annular frame and the plurality of suture clips can be formed from a single piece of flat material with the suture clip tabs being formed by laser cutting the piece of flat material, or the suture clips can be movable along a track formed in the annular frame.
Abstract:
Disclosed herein are suture clip delivery devices that can be loaded with several flat, disk-shaped suture clips and can deploy the suture clips one after another onto respective sutures without reloading the device with additional suture clips. An exemplary device includes a handle portion with an actuation mechanism that is coupled to a shaft portion that holds and deploys the suture clips. The shaft portion includes a mandrel on which the suture clips are mounted and a retainer that restricts the suture clips from moving proximally when the actuation mechanism pulls the mandrel proximally, which causes a distal-most suture clip to slide off the mandrel and be deployed onto one or more suture. The mandrel and remaining suture clips can them move distally to prepare to deploy the next suture clip.
Abstract:
In one embodiment, a multi-layer suture fastener that includes a generally disc-shaped body defining a plurality of axially spaced-apart layers. Each layer can include an inner axial surface and an outer axial surface. A suture opening can extend from the inner axial surface to the outer axial surface of each layer. The suture openings can have an open configuration and a closed configuration. One or more lines of suture can be passed through the suture openings when in the open configuration. The suture openings can be placed in the closed configuration. In the closed configuration, the one or more lines of suture can be restricted by radial surfaces of the suture opening from sliding through the suture openings in at least one longitudinal direction of the one or more lines of suture.