Abstract:
A system and method for determining rotor speed of an AC induction machine is disclosed. The system is programmed to estimate a rotor speed of the induction machine according to a linear speed estimation algorithm and based on name plate information (NPI) of the induction machine and parameters of the AC induction machine during operation thereof. The rotor speed estimation system is also programmed to estimate a rotor speed of the AC induction machine according to a frequency-domain signal processing algorithm and determine if the rotor speed estimated thereby is valid. If the rotor speed estimated by the frequency-domain signal processing algorithm is valid, then a tuned rotor speed of the AC induction machine is estimated according to the linear speed estimation algorithm and based, in part, on the rotor speed estimated by the frequency-domain signal processing algorithm.
Abstract:
A fuel tank system constructed in accordance to one example of the present disclosure includes a fuel tank, a first vent tube, an evaporative emissions control system and a cam driven tank venting control assembly. The first vent tube is disposed in the fuel tank. The evaporative emissions control system is configured to recapture and recycle emitted fuel vapor. The evaporative emissions control system has a controller. The cam driven tank venting control assembly has a rotary actuator that rotates a cam assembly based on operating conditions. The cam assembly has at least a first cam having a first cam profile configured to selectively open and close the first vent tube based on operating conditions.
Abstract:
A system and method for detecting excess voltage drop (EVD) in a three-phase electrical distribution circuit includes a diagnostic system comprising a processor that is programmed to receive three-phase voltages and currents provided to terminals of the electrical machine, determine fundamental components of the three-phase voltages and currents provided to the terminals, and compute positive, negative, and zero sequence currents from the fundamental components. The processor is also programmed to extract a compensated negative sequence current from the negative sequence current component, add the compensated negative sequence current to the positive sequence current to determine fault reference current phasors, determine a negative current reference phase angle for each phase based in part on a phase angle of the positive sequence current, and identify an EVD fault in the electrical distribution circuit based on the compensated negative sequence current, the fault reference current phasors, and the negative current reference phase angles.