摘要:
The present disclosure proves for new design of reactors used for ammonothermal growth of III nitride crystals. The reactors include a region intermediate a source dissolution region and a crystal growth region configured to provide growth of high quality crystals at rates greater than 100 μm/day. In one embodiment, multiple baffle plates having openings whose location is designed so that there is no direct path through the intermediate region, or with multiple baffle plates having differently sized openings on each plate so that the flow is slowed down and/or exhibit greater mixing are described. The disclosed designs enables obtaining high temperature difference between the dissolution region and the crystallization region without decreasing conductance through the device.
摘要:
The present invention discloses a new testing method of group III-nitride wafers. By utilizing the ammonothermal method, GaN or other Group III-nitride wafers can be obtained by slicing the bulk GaN ingots. Since these wafers originate from the same ingot, these wafers have similar properties/qualities. Therefore, properties of wafers sliced from an ingot can be estimated from measurement data obtained from selected number of wafers sliced from the same ingot or an ingot before slicing. These estimated properties can be used for product certificate of untested wafers. This scheme can reduce a significant amount of time, labor and cost related to quality control.
摘要:
The present invention in one preferred embodiment discloses a new design of HVPE reactor, which can grow gallium nitride for more than one day without interruption. To avoid clogging in the exhaust system, a second reactor chamber is added after a main reactor where GaN is produced. The second reactor chamber may be configured to enhance ammonium chloride formation, and the powder may be collected efficiently in it. To avoid ammonium chloride formation in the main reactor, the connection between the main reactor and the second reaction chamber can be maintained at elevated temperature. In addition, the second reactor chamber may have two or more exhaust lines. If one exhaust line becomes clogged with powder, the valve for an alternative exhaust line may open and the valve for the clogged line may be closed to avoid overpressuring the system. The quartz-made main reactor may have e.g. a pyrolytic boron nitride liner to collect polycrystalline gallium nitride efficiently. The new HYPE reactor which can grow gallium nitride crystals for more than 1 day may produce enough source material for ammonothermal growth. Single crystalline gallium nitride and polycrystalline gallium nitride from the HYPE reactor may be used as seed crystals and a nutrient for ammonothermal group III-nitride growth.
摘要:
The present invention in one preferred embodiment discloses a new design of HVPE reactor, which can grow gallium nitride for more than one day without interruption. To avoid clogging in the exhaust system, a second reactor chamber is added after a main reactor where GaN is produced. The second reactor chamber may be configured to enhance ammonium chloride formation, and the powder may be collected efficiently in it. To avoid ammonium chloride formation in the main reactor, the connection between the main reactor and the second reaction chamber can be maintained at elevated temperature. In addition, the second reactor chamber may have two or more exhaust lines. If one exhaust line becomes clogged with powder, the valve for an alternative exhaust line may open and the valve for the clogged line may be closed to avoid overpressuring the system. The quartz-made main reactor may have e.g. a pyrolytic boron nitride liner to collect polycrystalline gallium nitride efficiently. The new HYPE reactor which can grow gallium nitride crystals for more than 1 day may produce enough source material for ammonothermal growth. Single crystalline gallium nitride and polycrystalline gallium nitride from the HYPE reactor may be used as seed crystals and a nutrient for ammonothermal group III-nitride growth.