Ultracapacitors using transition metal nitride-containing electrode and transition metal nitride
    1.
    发明授权
    Ultracapacitors using transition metal nitride-containing electrode and transition metal nitride 有权
    使用过渡金属氮化物的电极和过渡金属氮化物的超级电容器

    公开(公告)号:US08971018B2

    公开(公告)日:2015-03-03

    申请号:US13524439

    申请日:2012-06-15

    申请人: Tadao Hashimoto

    发明人: Tadao Hashimoto

    摘要: The present invention discloses a new construction of ultracapacitor utilizing particles of transition metal nitride having negligible amount of halide impurities. The construction is expected to attain high specific energy density by using transition metal nitride particles and higher reliability by avoiding potential corrosion of metal components with halide impurities. The transition metal nitride particles are preferably synthesized by basic ammonothermal process, which utilizes supercritical ammonia with alkali metal mineralizers. Transition metal nitride such as vanadium nitride, molybdenum nitride, titanium nitride, nickel nitride, neodymium nitride, iron nitride, etc. can be synthesized in supercritical ammonia with reducing mineralizers such as potassium, sodium, lithium, magnesium, calcium, and aluminum. Since supercritical ammonia has characteristics of both gas and liquid, it can over complicated fine structure or fine particles. The new method is suitable for forming a protective coating on complicated structure or forming micro- to nano-sized particles.

    摘要翻译: 本发明公开了利用可忽略量的卤化物杂质的过渡金属氮化物颗粒的超级电容器的新结构。 预期通过使用过渡金属氮化物颗粒获得高比能量密度并且通过避免具有卤化物杂质的金属组分的潜在腐蚀,具有更高的可靠性。 过渡金属氮化物颗粒优选通过碱性氨热法合成,其利用超临界氨与碱金属矿化剂。 过渡金属氮化物如氮化钒,氮化钼,氮化钛,氮化镍,氮化钕,氮化铁等可以在超临界氨中与还原矿化剂例如钾,钠,镁,钙和铝合成。 由于超临界氨具有气液两极的特性,因此可能会导致复杂的微细结构或微细颗粒。 该新方法适用于在复杂结构上形成保护涂层或形成微米至纳米尺寸的颗粒。

    Methods for producing GaN nutrient for ammonothermal growth
    2.
    发明授权
    Methods for producing GaN nutrient for ammonothermal growth 有权
    用于生产氮热养殖的方法

    公开(公告)号:US08852341B2

    公开(公告)日:2014-10-07

    申请号:US12624006

    申请日:2009-11-23

    摘要: The present invention discloses methods to produce large quantities of polycrystalline GaN for use in the ammonothermal growth of group III-nitride material. High production rates of GaN can be produced in a hydride vapor phase growth system. One drawback to enhanced polycrystalline growth is the increased incorporation of impurities, such as oxygen. A new reactor design using non-oxide material that reduces impurity concentrations is disclosed. Purification of remaining source material after an ammonothermal growth is also disclosed. The methods described produce sufficient quantities of polycrystalline GaN source material for the ammonothermal growth of group III-nitride material.

    摘要翻译: 本发明公开了生产用于III族氮化物材料的氨热生长的大量多晶GaN的方法。 可以在氢化物气相生长系统中生产高产率的GaN。 增加多晶生长的一个缺点是增加杂质如氧气的掺入。 公开了使用减少杂质浓度的非氧化物材料的新型反应器设计。 还公开了在氨热生长之后的剩余源材料的纯化。 所描述的方法产生足够量的用于III族氮化物材料的氨热生长的多晶GaN源材料。

    Method for growing group III-nitride crystals in supercritical ammonia using an autoclave
    3.
    发明授权
    Method for growing group III-nitride crystals in supercritical ammonia using an autoclave 有权
    使用高压釜在超临界氨中生长III族氮化物晶体的方法

    公开(公告)号:US08709371B2

    公开(公告)日:2014-04-29

    申请号:US11921396

    申请日:2005-07-08

    摘要: A method of growing high-quality, group-III nitride, bulk single crystals. The group III-nitride bulk crystal is grown in an autoclave in supercritical ammonia using a source material or nutrient that is a group III-nitride polycrystals or group-III metal having a grain size of at least 10 microns or more and a seed crystal that is a group-III nitride single crystal. The group III-nitride polycrystals may be recycled from previous ammonothermal process after annealing in reducing gas at more then 600° C. The autoclave may include an internal chamber that is filled with ammonia, wherein the ammonia is released from the internal chamber into the autoclave when the ammonia attains a supercritical state after the heating of the autoclave, such that convection of the supercritical ammonia transfers source materials and deposits the transferred source materials onto seed crystals, but undissolved particles of the source materials are prevented from being transferred and deposited on the seed crystals.

    摘要翻译: 生长高品质,III族氮化物,大块单晶的方法。 III族氮化物本体晶体在超临界氨的高压釜中使用源材料或营养物生长,所述源材料或营养物是具有至少10微米或更小的晶粒尺寸的III族氮化物多晶体或III族金属,以及晶种, 是III族氮化物单晶。 III族氮化物多晶体可以在600℃以上的还原气体中退火之后从先前的氨热处理中回收。高压釜可以包括填充有氨的内部室,其中氨从内部室释放到高压釜 当氨在高压釜加热后达到超临界状态时,超临界氨的对流转移源材料并将转移的原材料沉积到晶种上,而防止源材料的未溶解颗粒被转移并沉积在 晶种。

    Gallium nitride bulk crystals and their growth method
    5.
    发明授权
    Gallium nitride bulk crystals and their growth method 有权
    氮化镓块状晶体及其生长方法

    公开(公告)号:US08253221B2

    公开(公告)日:2012-08-28

    申请号:US12234244

    申请日:2008-09-19

    IPC分类号: H01L29/20

    CPC分类号: C30B29/406 C30B7/10

    摘要: A gallium nitride crystal with a polyhedron shape having exposed {10-10} m-planes and an exposed (000-1) N-polar c-plane, wherein a surface area of the exposed (000-1) N-polar c-plane is more than 10 mm2 and a total surface area of the exposed {10-10} m-planes is larger than half of the surface area of (000-1) N-polar c-plane. The GaN bulk crystals were grown by an ammonothermal method with a higher temperature and temperature difference than is used conventionally, and using an autoclave having a high-pressure vessel with an upper region and a lower region. The temperature of the lower region of the high-pressure vessel is at or above 550° C., the temperature of the upper region of the high-pressure vessel is set at or above 500° C., and the temperature difference between the lower and upper regions is maintained at or above 30° C. GaN seed crystals having a longest dimension along the c-axis and exposed large area m-planes are used.

    摘要翻译: 具有暴露的{10-10} m面和暴露(000-1)N极c面的多面体形状的氮化镓晶体,其中暴露(000-1)N-极性c-面的表面积, 平面大于10平方毫米,暴露的{10-10} m面的总表面积大于(000-1)N极C面的表面积的一半。 通过具有比常规使用的更高的温度和温度差的氨热法生长GaN块状晶体,并且使用具有上部区域和下部区域的高压容器的高压釜。 高压容器的下部区域的温度为550℃以上,高压容器的上部区域的温度为500℃以上,下部温度差为 并且上部区域保持在30℃以上。使用沿着c轴具有最长尺寸和暴露的大面积m面的GaN晶种。

    Method for growing group III-nitride crystals in a mixture of supercritical ammonia and nitrogen, and group III-nitride crystals grown thereby
    6.
    发明授权
    Method for growing group III-nitride crystals in a mixture of supercritical ammonia and nitrogen, and group III-nitride crystals grown thereby 有权
    在超临界氨和氮的混合物中生长III族氮化物晶体的方法以及由此生长的III族氮化物晶体

    公开(公告)号:US07803344B2

    公开(公告)日:2010-09-28

    申请号:US11977661

    申请日:2007-10-25

    申请人: Tadao Hashimoto

    发明人: Tadao Hashimoto

    IPC分类号: C01B21/06

    CPC分类号: C30B29/403 C30B7/105

    摘要: A method of growing group III-nitride crystals in a mixture of supercritical ammonia and nitrogen, and the group-III crystals grown by this method. The group III-nitride crystal is grown in a reaction vessel in supercritical ammonia using a source material or nutrient that is polycrystalline group III-nitride, amorphous group III-nitride, group-III metal or a mixture of the above, and a seed crystal that is a group-III nitride single crystal. In order to grow high-quality group III-nitride crystals, the crystallization temperature is set at 550° C. or higher. Theoretical calculations show that dissociation of NH3 at this temperature is significant. However, the dissociation of NH3 is avoided by adding extra N2 pressure after filling the reaction vessel with NH3.

    摘要翻译: 在超临界氨和氮的混合物中生长III族氮化物晶体的方法和通过该方法生长的III族晶体的方法。 III族氮化物晶体使用多晶III族氮化物,非晶III族氮化物,III族金属或其混合物的源材料或营养物质在超临界氨的反应容器中生长, 即III族氮化物单晶。 为了生长高质量III族氮化物晶体,结晶温度设定在550℃以上。 理论计算表明,NH3在此温度下的解离是显着的。 然而,通过在用NH 3填充反应容器后加入额外的N 2压力来避免NH 3的离解。

    Methods for producing improved crystallinity group III-nitride crystals from initial group III-Nitride seed by ammonothermal Growth
    7.
    发明申请
    Methods for producing improved crystallinity group III-nitride crystals from initial group III-Nitride seed by ammonothermal Growth 有权
    通过氨热生长从III-III族氮化物种子生产改性结晶III族氮化物晶体的方法

    公开(公告)号:US20090309105A1

    公开(公告)日:2009-12-17

    申请号:US12455760

    申请日:2009-06-04

    IPC分类号: H01L29/20 H01L21/20

    摘要: The present invention discloses methods to create higher quality group III-nitride wafers that then generate improvements in the crystalline properties of ingots produced by ammonothermal growth from an initial defective seed. By obtaining future seeds from carefully chosen regions of an ingot produced on a bowed seed crystal, future ingot crystalline properties can be improved. Specifically, the future seeds are optimized if chosen from an area of relieved stress on a cracked ingot or from a carefully chosen N-polar compressed area. When the seeds are sliced out, miscut of 3-10° helps to improve structural quality of successive growth. Additionally a method is proposed to improve crystal quality by using the ammonothermal method to produce a series of ingots, each using a specifically oriented seed from the previous ingot. When employed, these methods enhance the quality of Group III nitride wafers and thus improve the efficiency of any subsequent device.

    摘要翻译: 本发明公开了产生更高质量III族氮化物晶片的方法,其然后通过初始缺陷种子的氨热生长产生的锭的结晶特性产生改善。 通过从在晶圆上生产的锭的精心选择的区域获得未来的种子,可以提高未来的锭晶体性质。 具体来说,如果从破裂的锭块或精心挑选的N极压缩区域的缓解应力区域选择,则将来的种子进行优化。 当种子切片时,3-10°的杂交有助于提高连续生长的结构质量。 另外,提出了通过使用氨热方法来生产一系列锭子来提高晶体质量的方法,每个锭子使用来自先前锭的特异性取向的种子。 当采用这些方法时,这些方法提高了III族氮化物晶片的质量,从而提高了任何随后的器件的效率。

    GALLIUM NITRIDE BULK CRYSTALS AND THEIR GROWTH METHOD
    8.
    发明申请
    GALLIUM NITRIDE BULK CRYSTALS AND THEIR GROWTH METHOD 有权
    氮化钾块状晶体及其生长方法

    公开(公告)号:US20090072352A1

    公开(公告)日:2009-03-19

    申请号:US12234244

    申请日:2008-09-19

    CPC分类号: C30B29/406 C30B7/10

    摘要: A gallium nitride crystal with a polyhedron shape having exposed {10-10} m-planes and an exposed (000-1) N-polar c-plane, wherein a surface area of the exposed (000-1) N-polar c-plane is more than 10 mm2 and a total surface area of the exposed {10-10} m-planes is larger than half of the surface area of (000-1) N-polar c-plane. The GaN bulk crystals were grown by an ammonothermal method with a higher temperature and temperature difference than is used conventionally, and using an autoclave having a high-pressure vessel with an upper region and a lower region. The temperature of the lower region of the high-pressure vessel is at or above 550° C., the temperature of the upper region of the high-pressure vessel is set at or above 500° C., and the temperature difference between the lower and upper regions is maintained at or above 30° C. GaN seed crystals having a longest dimension along the c-axis and exposed large area m-planes are used.

    摘要翻译: 具有暴露的{10-10} m面和暴露(000-1)N极c面的多面体形状的氮化镓晶体,其中暴露(000-1)N-极性c-面的表面积, 平面大于10平方毫米,暴露的{10-10} m面的总表面积大于(000-1)N极C面的表面积的一半。 通过具有比常规使用的更高的温度和温度差的氨热法生长GaN块状晶体,并且使用具有上部区域和下部区域的高压容器的高压釜。 高压容器的下部区域的温度为550℃以上,高压容器的上部区域的温度为500℃以上,下部温度差为 并且上部区域保持在30℃以上。使用沿着c轴具有最长尺寸和暴露的大面积m面的GaN晶种。