Abstract:
A method for automatically detecting a packet mode in a wireless communication system supporting a multiple transmission mode includes: acquiring at least one of data rate information, packet length information and channel bandwidth information from a transmitted frame; and determining the packet mode on the basis of the phase rotation check result of a symbol transmitted after a signal field signal and at least one of the data rate information, the packet length information and the channel bandwidth information acquired from the transmitted frame.
Abstract:
A method for automatically detecting a packet mode in a wireless communication system supporting a multiple transmission mode includes: acquiring at least one of data rate information, packet length information and channel bandwidth information from a transmitted frame; and determining the packet mode on the basis of the phase rotation check result of a symbol transmitted after a signal field signal and at least one of the data rate information, the packet length information and the channel bandwidth information acquired from the transmitted frame.
Abstract:
A method for automatically detecting a packet mode in a wireless communication system supporting a multiple transmission mode includes: acquiring at least one of data rate information, packet length information and channel bandwidth information from a transmitted frame; and determining the packet mode on the basis of the phase rotation check result of a symbol transmitted after a signal field signal and at least one of the data rate information, the packet length information and the channel bandwidth information acquired from the transmitted frame.
Abstract:
In the present invention, data generated from a source unit are distributed to at least one bandwidth; the data distributed to the respective bandwidths are encoded in order to perform an error correction; the encoded data are distributed to at least one antenna; a subcarrier is allocated to the data distributed to the respective antennas, and an inverse Fourier transform is performed; a short preamble and a first long preamble corresponding to the subcarrier are generated; a signal symbol is generated according to a data transmit mode; and a frame is generated by adding a second long preamble between the signal symbol and a data field for the purpose of estimating a channel of a subcarrier which is not used.
Abstract:
A method for automatically detecting a packet mode in a wireless communication system supporting a multiple transmission mode includes: acquiring at least one of data rate information, packet length information and channel bandwidth information from a transmitted frame; and determining the packet mode on the basis of the phase rotation check result of a symbol transmitted after a signal field signal and at least one of the data rate information, the packet length information and the channel bandwidth information acquired from the transmitted frame.
Abstract:
In the present invention, data generated from a source unit are distributed to at least one bandwidth; the data distributed to the respective bandwidths are encoded in order to perform an error correction; the encoded data are distributed to at least one antenna; a subcarrier is allocated to the data distributed to the respective antennas, and an inverse Fourier transform is performed; a short preamble and a first long preamble corresponding to the subcarrier are generated; a signal symbol is generated according to a data transmit mode; and a frame is generated by adding a second long preamble between the signal symbol and a data field for the purpose of estimating a channel of a subcarrier which is not used.
Abstract:
In a communications system using a plurality of beams, a terminal determines a beam to be communicated with the terminal among the plurality of beams, determines one sequence among sequences allocated to the determined beam as a beam based random access preamble, and transmits the beam based random access preamble through the determined beam. In addition, if a random access response for the beam based random access preamble is not received from a base station for a set interval, the terminal determines one sequence among sequences in a cell based random access preamble collection as a cell based random access preamble and transmits the cell based random access preamble.