Abstract:
The inventive concept relates to an optical line terminal registering optical network terminals having overlapping serial numbers. The optical line terminal may include a memory storing serial number information of optical network terminals of which a registration is completed in a storage region; and a control part that if a serial number by a serial number request is received from optical network terminals, the received serial number is compared with the serial number information of the memory and if they overlap each other, a previously set preliminary identifier is allocated to the optical network terminal having an overlapping serial number.
Abstract:
Disclosed is an adaptive deep learning inference system that adapts to changing network latency and executes deep learning model inference to ensure end-to-end data processing service latency when providing a deep learning inference service in a mobile edge computing (MEC) environment. An apparatus and method for providing a deep learning inference service performed in an MEC environment including a terminal device, a wireless access network, and an edge computing server are provided. The apparatus and method provide deep learning inference data having deterministic latency, which is fixed service latency, by adjusting service latency required to provide a deep learning inference result according to a change in latency of the wireless access network when at least one terminal device senses data and requests a deep learning inference service.
Abstract:
A fast protection switching method for a Passive Optical Network (PON). When performing protection switching from an operation link (an operation network) to a protection link (a protection network) in a PON, the fast protection switching method enables rapidly updating Equalization Delay (EqD) values, even if the EqD values are different for Optical Network Terminals (ONTs) of varying distances.
Abstract:
Disclosed herein is an Intrusion Detection System (IDS) false positive detection apparatus and method. An IDS false positive detection apparatus includes a payload extraction unit for extracting payloads by dividing each packet corresponding to an IDS detection rule into a header and a payload. A false positive payload information generation unit generates false positive payload information required to identify a false positive payload by extracting a payload of a false positive packet based on results of packet analysis received from a manager. A false positive payload determination unit transmits results of a determination of whether each payload extracted by the payload extraction unit corresponds to a false positive payload, based on the false positive payload information, to the manager.
Abstract:
Provided is a method of saving power in a passive optical network (PON) system including an optical line terminal (OLT) and a plurality of optical network units (ONUs), the OLT including an optical transceiver to communicate with at least one ONU through an optical line, and a controller to control the optical transceiver to transmit an upstream bandwidth map to the ONU at a predetermined transmission interval, wherein the transmission interval is determined based on a desired upstream data service delay time.
Abstract:
Disclosed are a method and apparatus for updating a terminal software version. The method includes providing software update start information including window size information and software image storage space information to a plurality of terminals, receiving first response information in accordance with provision of the software update start information from the plurality of terminals, and providing software update information in accordance with the window size information to the plurality of terminals in units of sections.
Abstract:
An optical network system for controlling a passive optical network (PON) in which at least one symmetric optical subscriber terminal and at least one asymmetric optical subscriber terminal coexist is provided.
Abstract:
An apparatus and method for monitoring an optical line is provided. The optical line monitoring apparatus may include a comparison unit to extract first identification information about an optical network terminal (ONT) from reflected data that is reflected and received from the optical line, and to compare the extracted first identification information to predetermined second identification information about the ONT, and a processor to analyze a state of the optical line using the reflected data when the first identification information is identical to the second identification information.
Abstract:
Provided are a system and method for providing a microservice-based device control interface. The system for providing a microservice-based device control interface includes a Docker registry server in which resources required for providing a device control interface are located and a gateway which receives and installs resources and provides a device control interface using a Docker-based microservice structure.
Abstract:
In the present invention, by providing a device for determining a state of an optical network terminal line including: an optical signal transfer interface configured to transfer a downlink signal transmitted from an optical line terminal to an optical network terminal line and to transfer an uplink signal transmitted from an optical network terminal connected to the optical network terminal line to the optical line terminal; an optical signal transmitter configured to transmit an optical signal to the optical signal transfer interface; an optical signal receiver configured to receive the downlink signal through the optical signal transfer interface, to receive a reflected signal corresponding to the optical signal, and to detect intensity of the downlink signal and the reflected signal; a signal converter configured to convert the reflected signal from an analog form to a digital form; a signal processor configured to analyze the reflected signal of a digital form and to determine the state of the optical network terminal line based on the analysis result; and a signal output interface configured to output the state of the optical network terminal line, it is possible to quickly and simply obtain state information of connection information of the optical network terminal line, and minimize time required for disconnection of the optical network terminal line from a port of splitter, and needs only equipment of a simple structure compared with existing measurement equipment for monitoring the state of the connection state between the optical network terminal and a drop fiber section, so that the cost of disconnection of the optical network terminal line is minimized.