Abstract:
A hologram image acquiring apparatus may include: a linear polarizer that filters incident light reflected by an object into a polarized component of a specific angle; a spherical lens that partially converts light that is incident through the linear polarizer to a spherical waveform; and a phase shifter that converts a part of the light incident through the spherical lens to a plane waveform having a different phase per pixel unit.
Abstract:
Provided is an apparatus for testing an optical fiber in an optical distribution network, the apparatus being capable of synthetically testing an optical fiber by using a plurality of optical pulse signals. The apparatus includes a transmitter configured to transmit a first and a second optical pulse signal to an optical fiber connected to optical network units (ONU) through a coupler, and a receiver configured to receive, from the coupler, a first received optical pulse signal and a second received optical pulse signal The apparatus includes an analog to digital (A/D) converter configured to generate first and second received optical signals according to received intensities of the first and second received optical pulse signals to convert the first and second received optical signals into first and second digital received optical data, and a processor configured to process the first and second digital received optical data to generate a scale domain response to perform image visualization and optical fiber state analysis to monitor the optical fiber.
Abstract:
Disclosed is a variable optical attenuator. The variable optical attenuator includes an electrochromic device having a reflective property or a transflective property, a lens configured to convert input light to focused light or collimated light and input the focused light or the collimated light to the electrochromic device, and an outputter configured to output light reflected from the electrochromic device, in which the electrochromic device is configured to attenuate an intensity of the input light by controlling a reflectivity and a transmissivity of the input light based on an element included in the electrochromic device and a voltage to be applied to the electrochromic device.
Abstract:
Disclosed is a spectroscopic device including a planar lightwave circuit to which light passing through an optical fiber is input, a wavelength divider configured to divide a wavelength of light passing through the planar lightwave circuit, a beam splitter configured to divide a traveling direction of light passing through the wavelength divider into an external sample inlet and an internal sample inlet and adjust power of the divided light, a charge-coupled device (CCD) image sensor configured to covert light transmitted from the internal sample inlet to an electrical signal or convert light reflected by the external sample inlet to an electrical signal, a control and signal processor configured to process the electrical signal to indicate a light intensity based on each wavelength, and an input and output interface configured to perform a spectrum analysis for each wavelength using the processed electrical signal.
Abstract:
Disclosed are an apparatus and a method capable of adjusting an upstream band for a corresponding ONU by detecting a quantity of bands occupied by a packet, not an effective user packet, among upstream transmission bands for each target object of allocation of each band in the OLT to examine whether a queue report is normal, and detecting an ONU, which transmits an abnormal queue report, according to the examination. An OLT of a PON according to an exemplary embodiment of the present disclosure includes: a frame monitoring unit configured to monitor upstream frame data received for each T-CONT; an error detection unit configured to determine whether a queue report error is generated for each T-CONT according to a result of the monitoring; and a band allocation controller configured to allocate an upstream band for an ONU, in which the queue report error is generated, separately from a normal ONU.
Abstract:
A terminal status monitoring apparatus connected to a terminal at an optical subscriber side in an optical network is provided. A signal transferring unit transfers a downlink optical signal to the terminal and receives, as a reflected optical signal, the downlink optical signal which is reflected at the terminal. A signal receiving unit measures an intensity of the reflected optical signal. A signal processing unit determines a connection status of a terminal device at the terminal by comparing an intensity of the downlink optical signal with the intensity of the reflected optical signal. A signal output unit outputs the connection status.
Abstract:
Disclosed herein are an optical network unit and a method for controlling the unit. In a passive optical network system, an optical transceiver of the optical network unit performs a wavelength change of an optical signal according to a wavelength setting command transferred from a media access control (MAC) unit and monitors a wavelength change state and reports the monitored wavelength change state to the MAC unit. When the wavelength malfunction occurs, the MAC unit blocks an uplink optical transmission of the optical transceiver.
Abstract:
Provided is an apparatus of recognizing optical connector connection including an IC tag connection unit configured to provide bus power and detect whether the optical connector is connected to an optical adapter, an IC tag configured to store an IC tag ID uniquely given to the optical connector, which is connected to a corresponding optical cable, and to receive the bus power to be driven for bus communication, and an IC tag ID obtaining unit configured to obtain the IC tag ID stored in the IC tag through the IC tag connection unit, when the optical connector is connected to the optical adapter.
Abstract:
Disclosed is a smart remote node optical network node including an optical layer monitoring unit configured to transmit a monitoring light signal to an optical network unit through an optical switch and receive a monitoring light signal reflected from the optical network unit, an infra recognition unit configured to recognize whether an optical connector is connected to an output port of a remote node and an identification number of the optical connector when the optical connector is connected thereto, and a control unit connected to the optical layer monitoring unit and the infra recognition unit and configured to control recognition and monitoring operations of the remote node according to a remote node application.
Abstract:
The inventive concept relates to an optical line terminal registering optical network terminals having overlapping serial numbers. The optical line terminal may include a memory storing serial number information of optical network terminals of which a registration is completed in a storage region; and a control part that if a serial number by a serial number request is received from optical network terminals, the received serial number is compared with the serial number information of the memory and if they overlap each other, a previously set preliminary identifier is allocated to the optical network terminal having an overlapping serial number.