Abstract:
An interconnect is formed on the substrate. The conductive structure at least includes a first conductive structure and a second conductive structure, which have a gap region in-between. The substrate is exposed at the gap region. A first structured dielectric layer is formed over the substrate to cover the first and the second conductive structures. The first structured dielectric layer also has a void at the gap region between the first and the second conductive structures. The void significantly extends to the whole gap region. The first structured dielectric layer also has an indent region above the void. An anti-etch layer fills the indent region of the first structured dielectric layer As a result, the first structured dielectric layer has a substantially planar surface A second structured dielectric layer is formed on the first structured dielectric layer and the anti-etch layer. The first structured dielectric layer and the second structured dielectric layer also have an opening to expose the conductive structure. When the opening is shifted to the gap region between the first conductive structure and the second conductive structure due to misalignment, the portion of the opening above the gap region stops on the anti-etch layer without opening the void.
Abstract:
A method of fabricating a shallow trench isolation includes formation of a polishing stop layer. The polishing stop layer is formed in a fill material by performing ion implantation to implant atoms in the fill material. The depth of the polishing stop layer can be controlled by the energy of the implanted atoms. The polishing stop layer prevents the fill material from being dished by chemical-mechanical polishing. The polishing stop layer also prevents scratches from forming in the surface of the fill material, which is used to form isolation regions.
Abstract:
A method of fabricating copper interconnection is provided comprising forming a dielectric layer with a trench or a via on a semiconductor substrate. A titanium layer is formed on the dielectric layer. A copper layer doped with light silicon is formed in the trench or the via. The copper layer is encapsulated by annealing to make silicon doped in the copper layer diffuse toward the surface of the copper to react with the titanium layer and the gas. It prevents the copper layer from oxidation and diffusion to increase the yield.