Abstract:
A kit includes a distractor, a plurality of trial elements, and at least one sensor. The distractor is configured to separate a first bone from a second bone by adjusting the distance between a first member and a second member, and is configured to receive at least one sensor in the first portion. Each of the trial elements corresponds to one of a plurality of surgical implants, is configured to be temporarily coupled to the second bone so as to evaluate suitability of the corresponding one of the plurality of surgical implants for implantation, and is configured to receive at least one sensor. The at least one sensor is configured to be received in the distractor or one of the trial elements, and is configured to record a magnitude of a force, a direction of application of a force, a pressure mapping, or a location of application of a force.
Abstract:
A surgery-facilitating system and method include a controller, a first tracker positioned on a first member of a joint, and a second tracker positioned on a second member of the joint. A first anatomical entity of the first member and a second anatomical entity of the second member are tracked using the first and second trackers to generate in the coordinate system, pre-operative kinematic data of the joint during a first movement of the joint, intra-operative kinematic data of the joint during a second movement of the joint, and post-operative kinematic data of the joint during a third movement of the joint. A surgical plan is generated for the surgical procedure of the subject based at least in part on the pre-operative kinematic data, the intra-operative kinematic data, or both, of the joint in the coordinate system.
Abstract:
A method includes receiving by a controller, a surgeon-specific surgery profile for an implantation of an implant into a joint, implant profiles, a patient-specific post-surgery desired functional profile of the joint after the implantation, and bone registration data for a first bone member and a second bone member of a patient are inputted into a surgical plan model to generate a surgical plan. The surgical plan model is designed to achieve the patient-specific post-surgery desired functional profile based at least in part on a plurality of dependencies between a plurality of surgical parameters, the implant profiles, at least one functional parameter representative of the expected functional performance of the joint, and movement-related data of the joint. The surgical plan is outputted on a graphical user interface (GUI) on a surgery assistant device to facilitate the implantation.
Abstract:
A device including a first plate configured to interface with a first bone structure of a joint; a second plate configured to interface with a second bone structure of the joint opposite the first bone structure; and at least one mechanical actuation mechanism disposed between the first plate and the second plate and configured to apply a distraction force along an axis between the first plate and the second plate so as to urge the first plate and the second plate away from one another, wherein the device is configured so as to have a range of motion ranging from a minimum distance between the first plate and the second plate to a maximum distance between the first plate and the second plate, and wherein the mechanical actuation mechanism is configured such that the distraction force is substantially constant distraction force across the range of motion.
Abstract:
A method includes receiving by a controller, a surgeon-specific surgery profile for an implantation of an implant into a joint, implant profiles, a patient-specific post-surgery desired functional profile of the joint after the implantation, and bone registration data for a first bone member and a second bone member of a patient are inputted into a surgical plan model to generate a surgical plan. The surgical plan model is designed to achieve the patient-specific post-surgery desired functional profile based at least in part on a plurality of dependencies between a plurality of surgical parameters, the implant profiles, at least one functional parameter representative of the expected functional performance of the joint, and movement-related data of the joint. The surgical plan is outputted on a graphical user interface (GUI) on a surgery assistant device to facilitate the implantation.
Abstract:
A device including a first plate configured to interface with a first bone structure of a joint; a second plate configured to interface with a second bone structure of the joint opposite the first bone structure; and at least one mechanical actuation mechanism disposed between the first plate and the second plate and configured to apply a distraction force along an axis between the first plate and the second plate so as to urge the first plate and the second plate away from one another, wherein the device is configured so as to have a range of motion ranging from a minimum distance between the first plate and the second plate to a maximum distance between the first plate and the second plate, and wherein the mechanical actuation mechanism is configured such that the distraction force is substantially constant distraction force across the range of motion.
Abstract:
A prosthesis system (100) of the present invention includes a monoblock stem extension (10) comprising a proximal portion (20) having a first neutral axis (20a); and a distal portion (30) defined by a longitudinal cylindrical shaft (31) having a second neutral axis (30a), wherein the second neutral axis (30a) is parallel and offset by a distance a from the first neutral axis (20a): and an eccentric bushing (50) arranged coaxial around the cylindrical shaft (31) of the monoblock stem extension (10), the eccentric bushing (50) comprising an external cylindrical shaft (51) having a third neutral axis (51a); and an internal cylinder (53) having a fourth neutral axis (50a) that is substantially co-linear with the second neutral axis (30a) of the monoblock stem extension (10), wherein the third neutral axis (5 1 a) is parallel and offset by a distance β from the fourth neutral axis (50a).
Abstract:
A system includes a patella trial comprising a baseplate and an articular surface member configured to move along at least one of a medial-lateral axis or a superior-inferior axis of the baseplate; and an implant comprising a posterior articular surface and an anterior surface, wherein the anterior surface has a medial/lateral width with a midpoint, wherein the posterior articular surface has a posterior-most point, wherein an imaginary line extending through the posterior-most point is parallel to an imaginary line extending through the midpoint, and wherein a distance (I) is defined by measuring a length between the imaginary line extending through the posterior-most point and the imaginary line extending through the midpoint; wherein the implant is selected from a set of implants each having a different I, and wherein the chosen implant is selected based on an offset of the articular surface member relative to the baseplate on the patella trial.