摘要:
To furnish an IGFET (120 or 122) with an asymmetrically doped channel zone (144 or 164), a mask (212) is provided over a semiconductor body and an overlying electrically insulated gate electrode (148P or 168P). Ions of a semiconductor dopant species are directed toward an opening (213) in the mask from two different angular orientations along paths that originate laterally beyond opposite respective opening-defined sides of the mask. The location and shape of the opening are controlled so that largely only ions impinging from one of the angular orientations enter the intended location for the channel zone. Ions impinging from the other angular orientation are shadowed by the mask from entering the channel zone location. Although the ions impinging from this other angular orientation do not significantly dope the channel zone location, they normally enter the semiconductor body elsewhere, e.g., the intended location for the channel zone of another IGFET.
摘要:
An IGFET (40 or 42) has a channel zone (64 or 84) situated in body material (50). Short-channel threshold voltage roll-off and punchthrough are alleviated by arranging for the net dopant concentration in the channel zone to longitudinally reach a local surface minimum at a location between the IGFET's source/drain zones (60 and 62 or 80 and 82) and by arranging for the net dopant concentration in the body material to reach a local subsurface maximum more than 0.1 μm deep into the body material but not more than 0.1 μm deep into the body material. The source/drain zones (140 and 142 or 160 and 162) of a p-channel IGFET (120 or 122) are provided with graded-junction characteristics to reduce junction capacitance, thereby increasing switching speed.
摘要:
A signal processing apparatus for a multi-mode satellite positioning system includes a band-pass filter, a local oscillator circuit, a first mixing circuit, a second mixing circuit, an analog-to-digital converter and a baseband circuit. By properly allocating a local frequency, radio frequency (RF) signals of a Global Positioning System (GPS), a Galileo positioning system and a Global Navigation System (GLONASS) are processed via a single signal path to save hardware cost.
摘要:
The invention discloses a novel control system for a Poly-Chromatic light-emitting diode (LED) lighting system, and applies feed forward and feedback control techniques to regulate the color and luminous outputs. Also, the control system is proposed for achieving luminous and color consistency for Poly-Chromatic LED lighting.
摘要:
Fabrication of two differently configured like-polarity insulated-gate field-effect transistors (40 or 42 and 240 or 242) entails introducing multiple body-material semiconductor dopants of the same conductivity type into a semiconductor body. Gate electrodes (74 or 94) are defined such that each body-material dopant reaches a maximum concentration below the channel surface depletion regions, below all gate-electrode material overlying the channel zones (64 or 84), and at a different depth than each other body-material dopant. The transistors are provided with source/drain zones (60 or 80) of opposite conductivity type to, and with halo pocket portions of the same conductivity type as, the body-material dopants. One pocket portion (100/102 or 104) extends along both source/drain zones of one of the transistors. Another pocket portion (244 or 246) extends largely along only one of the source/drain zones of the other transistor so that it is asymmetrical.
摘要:
An IGFET (40 or 42) has a channel zone (64 or 84) situated in body material (50). Short-channel threshold voltage roll-off and punchthrough are alleviated by arranging for the net dopant concentration in the channel zone to longitudinally reach a local surface minimum at a location between the IGFET's source/drain zones (60 and 62 or 80 and 82) and by arranging for the net dopant concentration in the body material to reach a local subsurface maximum more than 0.1 &mgr;m deep into the body material but not more than 0.1 &mgr;m deep into the body material. The source/drain zones (140 and 142 or 160 and 162) of a p-channel IGFET (120 or 122) are provided with graded-junction characteristics to reduce junction capacitance, thereby increasing switching speed.
摘要:
An IGFET (40 or 42) has a channel zone (64 or 84) situated in body material (50). Short-channel threshold voltage roll-off and punchthrough are alleviated by arranging for the net dopant concentration in the channel zone to longitudinally reach a local surface minimum at a location between the IGFET's source/drain zones (60 and 62 or 80 and 82) and by arranging for the net dopant concentration in the body material to reach a local subsurface maximum more than 0.1 μm deep into the body material but not more than 0.1 μm deep into the body material. The source/drain zones (140 and 142 or 160 and 162) of a p-channel IGFET (120 or 122) are provided with graded-junction characteristics to reduce junction capacitance, thereby increasing switching speed.
摘要:
Fabrication of an insulated-gate field-effect transistor (110) entails separately introducing three body-material dopants, typically through an opening in a mask, into body material (50) of a semiconductor body so as to reach respective maximum dopant concentrations at three different vertical locations in the body material. A gate electrode (74) is subsequently defined after which a pair of source/drain zones (60 and 62), each having a main portion (60M or 80M) and a more lightly doped lateral extension (60E or 62E), are formed in the semiconductor body. An anneal is performed during or subsequent to introduction of semiconductor dopant that defines the source/drain zones. The body material is typically provided with at least one more heavily doped halo pocket portion (100 and 102) along the source/drain zones. The vertical dopant profile resulting from the body-material dopants alleviates punchthrough and reduces current leakage.
摘要:
Fabrication of complementary first and second insulated-gate field-effect transistors (110 or 112 and 120 or 122) from a semiconductor body entails separately introducing (i) three body-material dopants into the body material (50) for the first transistor so as to reach respective maximum dopant concentrations at three different locations in the first transistor's body material and (ii) two body-material dopants into the body material (130) for the second transistor so as to reach respective maximum dopant concentrations at two different locations in the second transistor's body material. Gate electrodes (74 or 94 and 154 or 194) are subsequently defined after which source/drain zones (60, 62 or 80, 82 and 140, 142 or 160, 162) are formed in the semiconductor body. The vertical dopant profiles resulting from the body-material dopants alleviate punchthrough and reduce current leakage.
摘要:
A fuel cell control system and a control method thereof are provided. The fuel cell control system includes an air supply module, a fuel supply module having a fuel supply end, a fuel cell set having an electrical output end, an measuring unit and a control module having an arithmetic logic unit. A set of control algorithms is employed to effectively adjust the electrical output in order to identify the transfer function and to perform controller design. When the electrical output of the fuel cell is different from the default electrical output, the controller then regulates the fuel supply and the air supply to provide a stable fuel cell electrical output and to reduce fuel consumption.