Abstract:
Each of a pair of like-polarity IGFETs (40 or 42 and 240 or 242) has a channel zone (64 or 84) situated in body material (50). Short-channel effects are alleviated by arranging for the net dopant concentration in the channel zone to longitudinally reach a local surface minimum at a location between the IGFET's source/drain zones (60 and 62 or 80 and 82) and by arranging for the net dopant concentration in the body material to reach a local subsurface maximum more than 0.1 μm deep into the body material but not more than 0.4 μm deep into the body material. A pocket portion (100/102 or 104) extends along both source drain zones of one of the IGFETs. A pocket portion (244 or 246) extends largely along only one of the source/drain zones of the other IGFET so that it is an asymmetrical device.
Abstract:
An IGFET (40 or 42) has a channel zone (64 or 84) situated in body material (50). Short-channel threshold voltage roll-off and punchthrough are alleviated by arranging for the net dopant concentration in the channel zone to longitudinally reach a local surface minimum at a location between the IGFET's source/drain zones (60 and 62 or 80 and 82) and by arranging for the net dopant concentration in the body material to reach a local subsurface maximum more than 0.1 μm deep into the body material but not more than 0.1 μm deep into the body material. The source/drain zones (140 and 142 or 160 and 162) of a p-channel IGFET (120 or 122) are provided with graded-junction characteristics to reduce junction capacitance, thereby increasing switching speed.
Abstract:
At least one source/drain zone (140, 142, 160, or 162) of an enhancement-mode insulated-gate field-effect transistor (120 or 122) is provided with graded junction characteristics to reduce junction capacitance, thereby increasing switching speed. Each graded junction source/drain zone contains a main portion (140M, 142M, 160M, or 162M) and a more lightly doped lower portion (140L, 142L, 160L, or 162L) underlying, and vertically continuous with, the main portion. The magnitudes of the threshold voltages of a group of such transistors fabricated under the same post-layout fabrication process conditions so as to be of different channel lengths reach a maximum absolute value VTAM when the channel length is at a value LC, are at least 0.03 volt less than VTAM when the channel length is approximately 0.3 μm greater than LC, and materially decrease with increasing channel length when the channel length is approximately 1.0 μm greater than LC.
Abstract:
Each of a pair of differently configured like-polarity insulated-gate field-effect transistors (40 or 42 and 240 or 242) in a semiconductor structure has a channel zone of semiconductor body material, a gate dielectric layer overlying the channel zone, and a gate electrode overlying the gate dielectric layer. For each transistor, the net dopant concentration of the body material reaches multiple local subsurface maxima below a channel surface depletion region and below largely all gate-electrode material overlying the channel zone. The transistors have source/drain zones (60 or 80) of opposite conductivity type to, and halo pocket portions of the same conductivity type as, the body material. One pocket portion (100/102 or 104) extends along both source/drain zones of one of the transistors. Another pocket portion (244 or 246) extends largely along only one of the source/drain zones of the other transistor so that it is asymmetrical.
Abstract:
An IGFET (40 or 42) has a channel zone (64 or 84) situated in body material (50). Short-channel threshold voltage roll-off and punchthrough are alleviated by arranging for the net dopant concentration in the channel zone to longitudinally reach a local surface minimum at a location between the IGFET's source/drain zones (60 and 62 or 80 and 82) and by arranging for the net dopant concentration in the body material to reach a local subsurface maximum more than 0.1 μm deep into the body material but not more than 0.1 μm deep into the body material. The source/drain zones (140 and 142 or 160 and 162) of a p-channel IGFET (120 or 122) are provided with graded-junction characteristics to reduce junction capacitance, thereby increasing switching speed.
Abstract:
Fabrication of two differently configured like-polarity insulated-gate field-effect transistors (40 or 42 and 240 or 242) entails introducing multiple body-material semiconductor dopants of the same conductivity type into a semiconductor body. Gate electrodes (74 or 94) are defined such that each body-material dopant reaches a maximum concentration below the channel surface depletion regions, below all gate-electrode material overlying the channel zones (64 or 84), and at a different depth than each other body-material dopant. The transistors are provided with source/drain zones (60 or 80) of opposite conductivity type to, and with halo pocket portions of the same conductivity type as, the body-material dopants. One pocket portion (100/102 or 104) extends along both source/drain zones of one of the transistors. Another pocket portion (244 or 246) extends largely along only one of the source/drain zones of the other transistor so that it is asymmetrical.
Abstract:
An IGFET (40 or 42) has a channel zone (64 or 84) situated in body material (50). Short-channel threshold voltage roll-off and punchthrough are alleviated by arranging for the net dopant concentration in the channel zone to longitudinally reach a local surface minimum at a location between the IGFET's source/drain zones (60 and 62 or 80 and 82) and by arranging for the net dopant concentration in the body material to reach a local subsurface maximum more than 0.1 &mgr;m deep into the body material but not more than 0.1 &mgr;m deep into the body material. The source/drain zones (140 and 142 or 160 and 162) of a p-channel IGFET (120 or 122) are provided with graded-junction characteristics to reduce junction capacitance, thereby increasing switching speed.
Abstract:
Short-channel threshold voltage roll-off and punchthrough in an IGFET (40 or 42) having a channel zone (64 or 84) situated in body material (50) are alleviated by arranging for the net dopant concentration in the channel zone to longitudinally reach a local surface minimum at a location between the IGFET's source/drain zones (60 and 62 or 80 and 82) and by arranging for the net dopant concentration in the body material to reach a local subsurface maximum more than 0.1 &mgr;m deep into the body material but not more than 0.4 &mgr;m deep into the body material.
Abstract:
To furnish an IGFET (120 or 122) with an asymmetrically doped channel zone (144 or 164), a mask (212) is provided over a semiconductor body and an overlying electrically insulated gate electrode (148P or 168P). Ions of a semiconductor dopant species are directed toward an opening (213) in the mask from two different angular orientations along paths that originate laterally beyond opposite respective opening-defined sides of the mask. The location and shape of the opening are controlled so that largely only ions impinging from one of the angular orientations enter the intended location for the channel zone. Ions impinging from the other angular orientation are shadowed by the mask from entering the channel zone location. Although the ions impinging from this other angular orientation do not significantly dope the channel zone location, they normally enter the semiconductor body elsewhere, e.g., the intended location for the channel zone of another IGFET.
Abstract:
An IGFET (40 or 42) has a channel zone (64 or 84) situated in body material (50). Short-channel threshold voltage roll-off and punchthrough are alleviated by arranging for the net dopant concentration in the channel zone to longitudinally reach a local surface minimum at a location between the IGFET's source/drain zones (60 and 62 or 80 and 82) and by arranging for the net dopant concentration in the body material to reach a local subsurface maximum more than 0.1 μm deep into the body material but not more than 0.1 μm deep into the body material. The source/drain zones (140 and 142 or 160 and 162) of a p-channel IGFET (120 or 122) are provided with graded-junction characteristics to reduce junction capacitance, thereby increasing switching speed.