Abstract:
A method is provided for maintaining a gas turbine engine installed on an aircraft, the gas turbine engine including an electric machine mounted at least partially inward of a core air flowpath of the gas turbine engine. The method includes removing a rotor mount connecting a rotor of the electric machine to a rotary component of the gas turbine engine; removing a stator mount connecting a stator of the electric machine to a stationary component of the gas turbine engine; and removing in situ the electric machine.
Abstract:
A turbomachine includes a spool; and a turbine section including a turbine and a turbine center frame. The turbine includes a first plurality of turbine rotor blades and a second plurality of turbine rotor blades alternatingly spaced along an axial direction and rotatable with one another. The turbomachine also includes a first support member, the first plurality of turbine rotor blades coupled to the spool through the first support member; a second support member, the second plurality of turbine rotor blades supported by the second support member; and a bearing assembly including a first bearing and a second bearing, the first bearing and the second bearing each rotatably supporting the second support member and each being supported by the turbine center frame.
Abstract:
A turbomachine includes a spool and a turbine section. The turbine section includes a turbine center frame and a turbine, with the turbine including a first plurality of turbine rotor blades and a second plurality of turbine rotor blades. The first plurality of turbine rotor blades and second plurality of turbine rotor blades are alternatingly spaced along the axial direction. The turbomachine also includes a gearbox aligned with, or positioned aft of, a midpoint of the turbine. The gearbox includes a first gear coupled to the first plurality of rotor blades, a second gear coupled to the second plurality of rotor blades, and a third gear coupled to the turbine center frame. The turbomachine also includes a support member, the first plurality of turbine rotor blades coupled to the spool through the support member, the support member extending aft of the gearbox.
Abstract:
An assembly for removing entrained particles from a fluid stream passing through a gas turbine engine includes a first particle remover, a second particle remover fluidly coupled which receives a particle-laden stream from the first particle remover, and a venturi having a fluidly coupled to the second particle remover to increase the pressure differential across the assembly.
Abstract:
A nozzle assembly is provided which is, in part, formed of a low coefficient of thermal expansion material. The assembly includes a nozzle fairing formed of the low coefficient of thermal expansion material and includes a metallic strut extending radially through the nozzle fairing. Load is transferred from the nozzle fairing to a static structure in either of two ways: first, the strut may receive the load directly and/or second, load may be transferred from the nozzle fairing to at least one of the inner and outer support rings. Further, the nozzle fairing and strut may allow for internal airflow for cooling.
Abstract:
An apparatus and method for cooling a portion of a turbine engine comprising an outer casing defining an axial centerline, a turbine section through which a flow of combustion gasses flows in a forward to aft direction, an outer drum located between the outer casing and the turbine section defining an annular cavity therebetween. A set of seals extends between the outer casing and outer drum to define at least one cooled cavity.
Abstract:
A nozzle assembly is provided which is, in part, formed of a low coefficient of thermal expansion material. The assembly includes a nozzle fairing formed of the low coefficient of thermal expansion material and includes a metallic strut extending radially through the nozzle fairing. Load is transferred from the nozzle fairing to a static structure in either of two ways: first, the strut may receive the load directly and/or second, load may be transferred from the nozzle fairing to at least one of the inner and outer support rings. Further, the nozzle fairing and strut may allow for internal airflow for cooling.
Abstract:
An electric machine is provided. The electric machine defines a centerline and includes: a stator assembly; a rotor assembly rotatable relative to the stator assembly about the centerline; and an actuator coupled to the rotor assembly, the stator assembly, or both for moving the rotor assembly, the stator assembly, or both along the centerline between a first position and a second position, the rotor assembly positioned closer to the stator assembly when in the first position than when in the second position.
Abstract:
An apparatus for a turbine engine comprising an outer casing, an engine core provided within outer casing and having a at least one set of blades, and through which gasses flow in a forward to aft direction, an outer drum located within the outer casing to define an annular cavity. A set of seals extending between the first surface and the second surface to define at least one cooled cavity within the annular cavity.
Abstract:
A nozzle assembly is provided which is, in part, formed of a low coefficient of thermal expansion material. The assembly includes a nozzle fairing formed of the low coefficient of thermal expansion material and includes a metallic strut extending radially through the nozzle fairing. Load is transferred from the nozzle fairing to a static structure in either of two ways: first, the strut may receive the load directly and/or second, load may be transferred from the nozzle fairing to at least one of the inner and outer support rings. Further, the nozzle fairing and strut may allow for internal airflow for cooling.