Abstract:
A system and method for thermal inspection of a component having at least one cooling hole is disclosed, that uses an evaporative membrane for direct evaporative cooling of an exhausted working fluid. A working fluid is supplied to at least one internal passage of a component that is configured to exhaust the working fluid from the internal passage sequentially through the cooling holes and the wetted evaporative membrane disposed in direct air-tight contact with the component. An imager captures a time series of images corresponding to a transient evaporative response of the exhausted working fluid to determine a plurality of temperature values for the exhausted working fluid after passage through the evaporative membrane. A processor circuit is configured to evaluate the transient evaporative response of the exhausted working fluid.
Abstract:
The disclosure includes a sealing assembly for a turbine system. In one embodiment, the sealing assembly is for a turbine having a rotor blade and a stator nozzle. The sealing assembly includes a pair of oppositely facing seal teeth including concave surfaces. The pair of oppositely facing seal teeth are positioned on one of the rotor blade and the stator nozzle, and are for sealingly engaging the other of the rotor blade and the stator nozzle during operation of the turbine.
Abstract:
Various embodiments include a steam turbine nozzle and turbomachinery including such a nozzle. In various particular embodiments, a steam turbine nozzle includes: a body having: a first sidewall and a second sidewall opposite the first sidewall; a pressure side and a suction side each extending between the first sidewall and the second sidewall; and a leading edge section at a first junction of the pressure side and the suction side, and a trailing edge section at a second junction of the pressure side and the suction side; and a bypass fluid conduit including: a channel having an opening to at least one of the first sidewall or the second sidewall; and an outlet passageway fluidly connected with the channel between the first sidewall and the second sidewall, the outlet passageway including a first opening on at least one of the pressure side of the body, the suction side of the body or the trailing edge section.
Abstract:
The disclosure includes a sealing assembly for a turbine system. In one embodiment, the sealing assembly is for a turbine having a rotor blade and a stator nozzle. The sealing assembly includes a pair of oppositely facing seal teeth including concave surfaces. The pair of oppositely facing seal teeth are positioned on one of the rotor blade and the stator nozzle, and are for sealingly engaging the other of the rotor blade and the stator nozzle during operation of the turbine.
Abstract:
A brush seal for a turbine including an annular layer of filaments having a generally L-shape including an axial portion of the filaments and a radial portion of filaments, wherein a first end of the filaments is at an end of the radial portion and faces a rotating component of the turbine and a second end region of the filaments is at an end of the axial portion of the filaments and is fastened to a stationary component of the turbine.