Abstract:
A cleaning system and method use an ultrasound probe, a coupling mechanism, and a controller to clean equipment of a vehicle system. The ultrasound probe enters into an engine. The ultrasound probe emits ultrasound pulses and the coupling mechanism provides an ultrasound coupling medium between the ultrasound probe and one or more components of the engine. The controller drives the ultrasound probe to deliver the ultrasound pulse through the coupling medium to a surface of the one or more components of the engine. The ultrasound probe delivers the ultrasound pulse to remove deposits from the one or more components of the engine.
Abstract:
An electrochemical machining system for machining a conductive work piece is provided. The system includes a drilling tool configured to remove material from the conductive work piece. The drilling tool is configured to advance within the conductive work piece along a tool path to form a bore hole having a variable geometry that extends through the conductive work piece when the material is removed therefrom. The system further includes an inspection device configured to determine a position of the drilling tool along the tool path, and a controller configured to communicate with the inspection device. The controller is further configured to compare the tool path to a nominal tool path, and determine a position error of said drilling tool, the position error defined by a difference between the tool path and the nominal tool path.
Abstract:
An additive manufacturing system includes a build platform, a particulate dispenser assembly configured to dispense or remove particulate to or from the build platform, and a plurality of print heads each having at least one binder jet. The binder jets are configured to dispense at least one binder in varying densities onto the particulate in multiple locations to consolidate the particulate to form the component with a variable binder density throughout. The system also includes a plurality of arms extending at least partially across the build platform and supporting the print heads and at least one actuator assembly configured to rotate the print heads and/or the build platform about a rotation axis and move at least one of the print heads and the build platform in a build direction perpendicular to the build platform as part of a helical build process for the component.
Abstract:
An additive manufacturing system includes a build platform, a particulate dispenser assembly configured to dispense or remove particulate to or from the build platform, and a plurality of print heads each having at least one binder jet. The binder jets are configured to dispense at least one binder in varying densities onto the particulate in multiple locations to consolidate the particulate to form the component with a variable binder density throughout. The system also includes a plurality of arms extending at least partially across the build platform and supporting the print heads and at least one actuator assembly configured to rotate the print heads and/or the build platform about a rotation axis and move at least one of the print heads and the build platform in a build direction perpendicular to the build platform as part of a helical build process for the component.
Abstract:
An electrochemical machining system for machining a conductive work piece is provided. The system includes a drilling tool configured to remove material from the conductive work piece. The drilling tool is configured to advance within the conductive work piece along a tool path to form a bore hole having a variable geometry that extends through the conductive work piece when the material is removed therefrom. The system further includes an inspection device configured to determine a position of the drilling tool along the tool path, and a controller configured to communicate with the inspection device. The controller is further configured to compare the tool path to a nominal tool path, and determine a position error of said drilling tool, the position error defined by a difference between the tool path and the nominal tool path.
Abstract:
A drilling tool for use in machining a conductive work piece is provided. The tool includes a body portion, a forward electrode coupled to the body portion, and at least one side electrode coupled to the body portion. When electric current is supplied to the forward electrode and the at least one side electrode, material adjacent to the forward electrode and the at least one side electrode is removed from the conductive work piece. Further, the forward electrode and the at least one side electrode are selectively operable to form a bore hole having a variable geometry that extends through the conductive work piece when the material is removed therefrom.
Abstract:
A system to detect a position of a pipe with respect to a BOP includes a casing disposed around an outer surface of a section of the pipe. The system further includes sensing devices that are disposed on the casing and arranged to form a plurality of arrays and configured to generate position signals. The arrays are disposed circumferentially around the casing and spaced from one another along the length of the casing. The system includes a processing unit configured to compute distance between the pipe and each sensing device. The processing unit generates a first alert when the distance between the pipe and at least one sensing device is different from a reference distance. The processing unit generates a second alert when the distance between the pipe and each sensing device of at least one array of sensing devices is different from the reference distance.
Abstract:
A detection system to detect an object in a blowout prevention system of a production system includes a sensor coupled to the blowout prevention system and configured to send an ultrasonic pulse toward the object. The sensor is further configured to receive a signal including the ultrasonic pulse and noise after the ultrasonic pulse interacts with the object. The detection system also includes a controller coupled to the sensor and configured to identify the ultrasonic pulse in the signal using a first cancellation signal at a first time and a second cancellation signal at a second time. The controller is further configured to determine that the first cancellation signal corresponds to the noise in the signal at the first time, and determine that the second cancellation signal corresponds to the noise in the signal at the second time. The controller is configured to determine a characteristic of the object based on the ultrasonic pulse.
Abstract:
A detection system to detect an object in a blowout prevention system of a production system includes a sensor coupled to the blowout prevention system and configured to send an ultrasonic pulse toward the object. The sensor is further configured to receive a signal including the ultrasonic pulse and noise after the ultrasonic pulse interacts with the object. The detection system also includes a controller coupled to the sensor and configured to identify the ultrasonic pulse in the signal using a first cancellation signal at a first time and a second cancellation signal at a second time. The controller is further configured to determine that the first cancellation signal corresponds to the noise in the signal at the first time, and determine that the second cancellation signal corresponds to the noise in the signal at the second time. The controller is configured to determine a characteristic of the object based on the ultrasonic pulse.
Abstract:
A cleaning system and method use an ultrasound probe, a coupling mechanism, and a controller to clean equipment of a vehicle system. The ultrasound probe enters into an engine. The ultrasound probe emits ultrasound pulses and the coupling mechanism provides an ultrasound coupling medium between the ultrasound probe and one or more components of the engine. The controller drives the ultrasound probe to deliver the ultrasound pulse through the coupling medium to a surface of the one or more components of the engine. The ultrasound probe delivers the ultrasound pulse to remove deposits from the one or more components of the engine.