Abstract:
This paper describes an invention involving an electrochemical discharge-enabled micro-grinding process for micro-components of silicon-based materials. The specific machining method is described below. A micro-grinding tool and an auxiliary electrode are respectively connected to the negative and positive electrodes of a pulsed DC power supply. When the current flows through the loop, an electrochemical hydrogen evolution reaction (HER) occurs at the micro-grinding tool in the grinding fluid, which generate multiple hydrogen bubbles. The bubbles coalesce into an insulating gas film and separate the micro-grinding tool from the grinding fluid; when the critical voltage is reached, the gas film is broken down and an electrochemical discharge occurs accompanied by discharge spark; under the action of the discharge spark, the surface material of the workpiece in the discharge-affected region is directly ablated to generate a heat-affected layer (HAL), namely, physical modification.
Abstract:
In some examples, a pulsed electrochemical machining (pECM) system including a first tool body including a first electrode defining a working surface at a distal end of the tool axis configured to face a workpiece and a second tool body including a second electrode defining a working surface at a distal end of the tool axis configured to face a workpiece. The system includes a mechanical system configured to position the working surface of the first tool body relative to the workpiece and configured to position the working surface of the second tool body relative to the workpiece. The system includes an electrolyte system configured to supply electrolyte to a first interelectrode gap and a second interelectrode gap and a power supply configured to generate a pulsed direct current between the first tool body and the workpiece and the second tool body and the workpiece.
Abstract:
An electrolytic machining system includes a controller, a drive member coupled to the controller, a power supply, a diving circuit, a detecting circuit, and an electrode module. The diving circuit is coupled to the power supply module and configured to divide a total voltage taken from the power supply module into a plurality of independent working voltages. The detecting circuit is coupled to the dividing circuit and the electrode assembly. The detecting circuit detects each independent working voltage and feeds back information as to the level of the independent working voltage to the controller as the electrode assembly is moved towards a workpiece. When the detection indicates an incorrect working voltage, the controller controls the drive member to move the electrode assembly away from the workpiece.
Abstract:
An electrochemical machining apparatus is modular and includes a power module, an electrolyte processing module, an actuator module, and a control module that are connected with one another via a connection apparatus. The components are modular and are mounted on separate supports, many of which additionally include caster, and the connection apparatus is in the form of a removable umbilical. The modules can be individually moved to a location within a facility where a component is installed, and the modules can be interconnected to form the modular electrochemical machining apparatus at the location of the installed component. The apparatus can then perform an electrochemical machining operation in situ on the installed component.
Abstract:
The invention relates to a method for electrochemical processing of at least one workpiece, comprising at least the following steps: a) setting a first flow density during a first phase in an electrolyte, b) retaining the first flow density during a second phase following the first phase, c) increasing the first flow density during a third phase following the second phase to a second flow density at least 30% greater than the first flow density, and d) reducing the second flow density during a fourth phase following the third phase within a maximum of 100 microseconds to a maximum of 1% of the second flow density.
Abstract:
Methods and apparatuses for selectively removing conductive materials from a microelectronic substrate. A method in accordance with an embodiment of the invention includes positioning the microelectronic substrate proximate to and spaced apart from an electrode pair that includes a first electrode and a second electrode spaced apart from the first electrode. An electrolytic liquid can be directed through a first flow passage to an interface region between the microelectronic substrate and the electrode pair. A varying electrical signal can be passed through the electrode pair and the electrolytic liquid to remove conductive material from the microelectronic substrate. The electrolytic liquid can be removed through a second flow passage proximate to the first flow passage and the electrode pair.
Abstract:
Device and method suitable for the electrochemical processing of an object. The device is provided at least with a chamber for accommodating an electrolyte, means for supporting the object to be processed in this chamber, electrodes arranged in this chamber, and control means for applying an electric current between the object to be processed and the electrodes.
Abstract:
An electrochemical machining apparatus and method for machining a workpiece (60). The apparatus provides a pulse of electric power, which is conducted from the workpiece (60), to an electrolyte (68) flowing through a gap (62), and then to an electrode (58). Material is eroded from the workpiece (60) when the pulse of electric power is applied, thus machining the workpiece (60). The apparatus includes a power supply (12) to supply the electric power and a switching portion (40) for producing the pulse by switching the electric power ON and OFF. The switching portion (40) is capable of producing a pulse of electric power with a pulse duration of about 2 microseconds and a current of at least about 2800 amperes.
Abstract:
An electrochemical machining system and method includes at least one tube arranged in a first fixture, a second fixture arranged adjacent to the first fixture, the second fixture adapted for supporting a workpiece relative to the tube, a translation mechanism which causes relative movement between the first fixture and the second fixture, a power supply which supplies a current to the workpiece and the tube, and a control unit which controls the power supply to alternately apply a forward current and a zero current (C0) to the workpiece and the tube for a total time interval (tt) wherein deplation of the workpiece occurs and bubbles are separated from the tube. This may be followed by a reverse current (CR) or voltage to the workpiece and the tube for a second time interval (tR), wherein deplation of the workpiece occurs.
Abstract translation:电化学加工系统和方法包括布置在第一固定件中的至少一个管,邻近第一夹具布置的第二夹具,适于相对于管支撑工件的第二夹具;平移机构,其使第一夹具 固定装置和第二固定装置,向工件和管提供电流的电源;以及控制单元,其控制电源以交替施加正向电流和零电流(C SUB) 在工件和管之间产生总的时间间隔(t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t 这可能之后是反向电流(C SUB R)或对工件和管子的第二时间间隔(t R R)的电压,其中工件的剥离发生 。
Abstract:
The invention provides a method for determining the position of a channel which has been electrochemically machined in a workpiece by an electrolyte and/or the wall thickness which is present between the electrochemically machined channel and the surface of the component, in which magnetic particles are added to the electrolyte used during the machining, the magnetic fields associated with the magnetic particles are detected, and the position of the electrochemically machined channel and/or the wall thickness which is present between the electrochemically machined channel and the surface of the component is determined on the basis of the detected magnetic fields.