Abstract:
At least one thermal module in fluidic communication with the one or more electronic components. The thermal module including a hydraulic motor operable to rotate a motor output shaft. The module further including a fan coupled to the motor output shaft, at least one heat exchanger in fluidic communication with the fan to provide passage therethrough of an air stream in response to rotational movement of the fan, and a conduit carrying a pressurized liquid stream through the hydraulic motor and each of the at least one heat exchanger. The pressurized liquid stream causing the motor output shaft to rotate and wherein heat in one of the air stream or the pressurized liquid stream is passed through each of the at least one heat exchanger and rejected into the other of the air stream or the pressurized liquid stream. A thermal management system including the at least one thermal module is disclosed.
Abstract:
A diagnostic device for diagnosing a faulty condition in a gradient amplifier system is presented. The diagnostic device includes a first current sensor configured to be coupled to an input terminal of a filter unit, where the first current sensor is configured to measure a first electric current at the input terminal of the filter unit, and where the first electric current includes a high frequency current component and a low frequency current component. Further, the diagnostic device includes a diagnostic unit coupled to the first current sensor and configured to determine an impedance across the filter unit and a load unit based on the low frequency current component of the measured first electric current and a pre-stored reference voltage, and diagnose the faulty condition of at least one component in at least one of the filter unit and the load unit based on a characteristic of the determined impedance.
Abstract:
A diagnostic device for diagnosing a faulty condition in a gradient amplifier system is presented. The diagnostic device includes a first current sensor configured to be coupled to an input terminal of a filter unit, where the first current sensor is configured to measure a first electric current at the input terminal of the filter unit, and where the first electric current includes a high frequency current component and a low frequency current component. Further, the diagnostic device includes a diagnostic unit coupled to the first current sensor and configured to determine an impedance across the filter unit and a load unit based on the low frequency current component of the measured first electric current and a pre-stored reference voltage, and diagnose the faulty condition of at least one component in at least one of the filter unit and the load unit based on a characteristic of the determined impedance.
Abstract:
In a magnetic resonance imaging (MRI) system, synchronized control of the operation of a gradient amplifier subsystem, a power supply subsystem, and a power distribution unit subsystem is accomplished by providing a coil command reference signal as an input to respective control blocks of the gradient amplifier subsystem, the power supply subsystem, and the power distribution unit subsystem. The coil command reference signal corresponds to a predetermined gradient coil current for at least one gradient coil of a scanner of the MRI system.
Abstract:
An ultrasound pulse generator circuit includes a first gate driver electrically coupled to a first gallium nitride (GaN) transistor, a second gate driver electrically coupled to a second GaN transistor, a first snubber circuit, a second snubber circuit, and a transformer. The first snubber circuit and the second snubber circuit each include a respective capacitor and resistor and each snubber circuit is configured to clamp a voltage overshoot when present. Further, the transformer generates an output signal when operated and the third transformer is electrically connected downstream of the first GaN transistor, the second GaN transistor, the first snubber circuit, and the second snubber circuit. In addition, the transformer includes multiple windings.
Abstract:
A gradient amplifier system, includes: a power stage comprising a plurality of bridge amplifiers, each operates at a first switching frequency; a gradient coil coupled to the power stage and configured to produce a magnetic field proportional to a coil current signal supplied by the power stage; a controller stage coupled to an input terminal of the power stage and configured to: generate a pulse width modulated gate signal based on the coil current signal and a reference current signal, wherein the pulse width modulated gate signal is generated at a second switching frequency when a slew rate associated with the reference current signal is below a threshold rate for at least a first time period; and apply the pulse width modulated gate signal to the power stage for changing an operating frequency of each of the plurality of bridge amplifiers from the first to the second switching frequency.
Abstract:
In a magnetic resonance imaging (MRI) system, synchronized control of the operation of a gradient amplifier subsystem, a power supply subsystem, and a power distribution unit subsystem is accomplished by providing a coil command reference signal as an input to respective control blocks of the gradient amplifier subsystem, the power supply subsystem, and the power distribution unit subsystem. The coil command reference signal corresponds to a predetermined gradient coil current for at least one gradient coil of a scanner of the MRI system.
Abstract:
Embodiments of the present disclosure include an inductor including at least one inductor coil, the at least one inductor coil including a plurality of outer longitudinal portions aligned around an outer periphery of the inductor, and a plurality of inner longitudinal portions aligned around an interior of the inductor. The plurality of outer longitudinal portions and the plurality of inner longitudinal portions collectively form two width-wise sides of the inductor and two length-wise sides of the inductor. The two width-wise sides and the two lengthwise sides define a substantially rectangular prism shape. The two width-wise sides and the two lengthwise sides define a hollow inductor core.
Abstract:
A pulsed power system is disclosed, which comprises at least two H-bridges cascaded for providing pulsed current to a load. Each H-bridge comprises at least two legs, and each leg comprises at least two transistor switches connected in series. Each transistor switch comprises a transistor and a diode electrically coupled with the transistor in parallel. The pulsed power system also comprises a controller configured to determine if a slew rate of the load current is lower than a threshold, and to reduce switching loss in response to the slew rate being lower than the threshold.
Abstract:
The present disclosure presents techniques to facilitate improving operation of an electrical system, which includes a bus structure that cascades multiple electrical devices. The bus structure includes a first outer conductive layer implemented as a positive layer; a second outer conductive layer implemented as a negative layer; a first intermediate conductive layer neighboring the first outer conductive layer; a second intermediate conductive layer neighboring the second outer conductive layer; and a third intermediate conductive layer neighboring the second intermediate conductive layer, in which the third intermediate conductive layer is implemented as an inter-device layer that facilitates electrically coupling at least two of the electrical devices in series. The first intermediate conductive layer is implemented as a negative layer and the second intermediate conductive layer is implemented as a positive layer to facilitate reducing stray inductance and/or increasing stray capacitance introduced in the electrical system during operation.