Abstract:
A system is provided with a measurement system having a plurality of light sources, a plurality of light sensors, and a controller coupled to the plurality of light sources and the plurality of light sensors. The controller is configured to monitor one or more parameters between a rotor and a casing at least partially based on an interruption or a transmission of one or more paths of light from the plurality of light sources to the plurality of light sensors.
Abstract:
A wireless sensor antenna system for a turbomachine including a rotating blade including a passive sensor is disclosed. The wireless sensor antenna system includes an antenna extending continuously along a circumferential interior surface of a casing of the turbomachine that surrounds the rotating blade. The antenna is configured to receive a return wireless signal from the passive sensor. A power transmission element extends along the at least portion of the circumferential interior surface of the casing to power the passive sensor by emitting an electromagnetic signal to power the passive sensor.
Abstract:
A method for determining an arrival-time of a rotor blade that includes attaching an RF reader to a stationary surface and an RF tag to the rotor blade. Strength-of-signal data points are collected via an RF monitoring process that includes: emitting an RF signal from the RF reader; receiving the RF signal at the RF tag and emitting a return RF signal by the RF tag in response thereto; receiving the return RF signal at the RF reader; measuring a signal strength of the return RF signal as received by the RF reader; and determining the strength-of-signal data point as being equal to the measured signal strength. The RF monitoring process is repeated until multiple strength-of-signal data points are collected. A maximum strength-of-signal is determined from the multiple strength-of-signal data points, and the arrival-time for the rotor blade is determined as being a time that corresponds to the maximum strength-of-signal.
Abstract:
An optical sensor for a rotating blade stage of a turbomachine is disclosed. The optical sensor includes a housing to be mounted relative to a circumferential interior surface of a casing of the turbomachine. Optical fiber(s) are operatively coupled to the housing for communicating: an optical signal for sending toward the rotating blade stage and a return optical signal reflected by the rotating blade stage, through the casing. An optical signal redirecting element is configured to redirect the optical signal from optical fiber(s) inwardly toward the rotating blade stage relative to the casing, and redirect the return optical signal reflected by the rotating blade stage into the at least one optical fiber. Optical fiber(s) have a longitudinal shape configured to follow the circumferential interior surface of the casing.
Abstract:
A system for attaching a device to a rotating shaft is provided herein. The system may include a rotating shaft, a telemetry transmitter positioned about the rotating shaft, and a housing positioned about the telemetry transmitter. The telemetry transmitter may be trapped by the housing. The system also may include a connector configured to connect the housing to the rotating shaft.
Abstract:
A system for packaging electronic components in a rotatable shaft includes an annular carrier shaft having a first end that is axially spaced from a second end and an inner surface that is radially spaced from an outer surface, and a plurality of transmitter assemblies annularly arranged within the carrier shaft. Each transmitter assembly includes a transmitter housing radially supported within the carrier shaft via a pair of circumferentially spaced rail members. Each transmitter assembly comprises a daughter board that extends laterally and longitudinally across a bottom portion of the transmitter housing and at least one electronic component electrically coupled to the daughter board. The electronic component extends substantially perpendicular to the daughter board within the transmitter housing.
Abstract:
A system for routing rotatable wire bundles which extend from a rotor shaft of a turbomachine includes a plurality of wire bundles which extend outwardly from an inner passage of the rotor shaft of the turbomachine. An annular wire barrel is coupled to an end of the rotor shaft. A plurality of thru-holes is defined within and/or by the wire barrel. The plurality of thru-holes is annularly arranged therein. Each thru-hole extends through an aft wall of the wire barrel and is circumferentially spaced from adjacent thru-holes. Each wire bundle extends individually through a corresponding thru-hole of the plurality of thru-holes.
Abstract:
A fitting for positioning a probe in a hot gas path within a casing of a gas turbine engine is disclosed herein. The fitting includes a main body attachable to the casing opposite the hot gas path. The main body includes an internal bore and one or more cooling holes in communication with the internal bore. A compliant seal is positionable within the internal bore. In addition, a follower is positionable within the internal bore adjacent to the compliant seal. Moreover, the fitting includes a fastener configured to mate with the main body. In this manner, the follower deforms the compliant seal about the probe within the main body to secure and seal the probe within the main body.
Abstract:
A method for routing wires from a rotor shaft of a turbomachine includes routing a plurality of wire bundles through an end portion of the rotor shaft and into an annular extension shaft which is coupled to the end portion of the rotor shaft, threading each wire bundle through a corresponding thru-hole of a plurality of thru-holes defined in an annular wire barrel, inserting the wire barrel into the extension shaft and fixedly connecting the wire barrel to the extension shaft.
Abstract:
A system for attaching a device to a rotating shaft is provided herein. The system may include a rotating shaft, a telemetry transmitter positioned about the rotating shaft, and a housing positioned about the telemetry transmitter. The telemetry transmitter may be trapped by the housing. The system also may include a connector configured to connect the housing to the rotating shaft.