Abstract:
According to some embodiments, system and methods are provided comprising generating a nominal computer-aided design (CAD) image of a component; producing a physical representation of the component from the nominal CAD image using an additive manufacturing (AM) process; measuring the physical component to obtain measurement data; determining a deviation between geometry associated with the nominal CAD image and the obtained measurement data; determining a compensation field for the deviation, if the deviation is outside of a tolerance threshold; modifying the nominal CAD image by the compensation field; and producing a physical representation of the component from the modified nominal CAD image. Numerous other aspects are provided.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to generate a workscope. An example apparatus includes a workscope mapper, workscope strategy analyzer, and workscope selector. The workscope strategy analyzer is to evaluate each of the plurality of workscopes using dynamic optimization to determine a maintenance value and benefit to an asset associated with each workscope based on a stage in a remaining life of a constraint at which the evaluation is executed and a state of the asset. The dynamic optimization is to determine a prediction of the maintenance value based on a probability of a future change in state and associated workscope value until the end of life of the constraint. The maintenance value, used to select a workscope from the plurality of workscopes, is to be determined by the dynamic optimization as a sum of the associated workscope values until the end of life of the constraint.
Abstract:
Some embodiments facilitate creation of an industrial asset item via a rotary additive manufacturing process. For example, a build plate may rotate about a vertical axis and move, relative to a print arm, along the vertical axis during printing. An industrial asset item definition data store may contain at least one electronic record defining the industrial asset item. A frame creation computer processor may slice the data defining the industrial asset item to create a series of two-dimensional, locally linear frames helically arranged as a spiral staircase of steps (and each step may be oriented normal to the vertical axis. Indications of the series of two-dimensional frames may then be output to be provided to a rotary three-dimensional printer.
Abstract:
An additive manufacturing system includes a build platform, at least one first consolidation device, and at least one second consolidation device. The at least one first consolidation device is configured to direct at least one first energy beam to a first face of a component. The first face has a first orientation. The at least one second consolidation device is configured to simultaneously direct at least one second energy beam toward a second face of the component as the first consolidation device directs the at least one first energy beam toward the first face. The second face has a second orientation different from the first orientation.
Abstract:
A method of fabricating a component is provided. The method includes depositing particles onto a build platform. The method also includes distributing the particles to form a build layer. The method further includes operating a consolidation device to consolidate a first plurality of particles along a scan path to form a component. The component includes a top surface spaced apart from the build platform and an outer surface. The outer surface extends between the build platform and the top surface, and at least a portion of the outer surface faces a substantially particle-free region of the build platform.
Abstract:
A method for repairing a structure in an additive manufacturing system is provided. The method includes detecting a defect in a structure formed using an additive manufacturing process, the structure including a first surface that faces a powder containing region and a second surface that faces a substantially powder free region, generating a supplemental scan path that covers at least a portion of the structure based on a location of the detected defect, and controlling a consolidation device, based on the supplemental scan path, to remedy the defect.
Abstract:
An additive manufacturing system including a consolidation device, a build platform, an optical detector, and a controller is provided. The consolidation device is configured to form a build layer of a component. The build platform is configured to rotate about a build platform rotation axis extending along a first direction. The optical detector is configured to detect locations of at least two alignment marks. The controller is configured to receive locations of the at least two alignment marks from the optical detector. The controller is also configured to determine the locations of the build platform rotation axis and a build platform rotation center point based on a comparison between the at least two alignment marks, wherein the build platform rotation center point lies along the build platform rotation axis. The controller is further configured to control the consolidation device to consolidate a plurality of particles on the build platform.
Abstract:
A controller for use in an additive manufacturing system including at least one laser device configured to generate at least one melt pool in powdered material including a processing device and a memory device. The controller is configured to generate at least one control signal to control a power output of the at least one laser device throughout at least one scan path across the layer of powdered material, the scan path generated at least partially based on a functional relationship between a plurality of points of a generating path and each point of a plurality of points of the scan path. The controller is further configured to generate a non-uniform energy intensity profile for the scan path, and transmit the control signal to the laser device to emit at least one laser beam to generate at least one melt pool.
Abstract:
A component is fabricated in a powder bed by moving a laser array across the powder bed. The laser array includes a plurality of laser devices. The power output of each laser device of the plurality of laser devices is independently controlled. The laser array emits a plurality of energy beams from a plurality of selected laser devices of the plurality of laser devices to generate a melt pool in the powder bed. A non-uniform energy intensity profile is generated by the plurality of selected laser devices. The non-uniform energy intensity profile facilitates generating a melt pool that has a predetermined characteristic.
Abstract:
A method that includes additively manufacturing with an additive manufacturing (AM) system a sub-component that has a locator element. Using a control system of the AM system for positioning a first location of the locator element. Selectively placing a portion of another sub-component adjacent to the locator element, based on the positioning. Then attaching the second sub-component to the first sub-component in a region, wherein the region is based on the positioning knowledge from the control system so as to make a component. A component that comprises a first sub-component that has an AM locator element; and a second sub-component attached to the first sub-component, wherein the locator element is attached to the second sub-component within the same additive manufacturing build chamber as the first sub-component.