Abstract:
An additive manufacturing system includes a laser device, a first scanning device, and an optical system. The laser device is configured to generate a laser beam, and the first scanning device is configured to selectively direct the laser beam across a powder bed. The laser beam generates a melt pool in the powder bed. The optical system includes an optical detector configured to detect electromagnetic radiation generated by the melt pool, and a second scanning device configured to direct electromagnetic radiation generated by the melt pool to the optical detector.
Abstract:
A method that includes additively manufacturing with an additive manufacturing (AM) system a sub-component that has a locator element. Using a control system of the AM system for positioning a first location of the locator element. Selectively placing a portion of another sub-component adjacent to the locator element, based on the positioning. Then attaching the second sub-component to the first sub-component in a region, wherein the region is based on the positioning knowledge from the control system so as to make a component. A component that comprises a first sub-component that has an AM locator element; and a second sub-component attached to the first sub-component, wherein the locator element is attached to the second sub-component within the same additive manufacturing build chamber as the first sub-component.
Abstract:
A method of monitoring a surface temperature of an environmental barrier coating (EBC) of a hot gas component includes directing an excitation beam having a first wavelength at a layer of a temperature indicator formed on the hot gas component. The method also includes measuring a fluorescent radiation emitted by the temperature indicator. The fluorescent radiation has a second wavelength and an intensity. In addition, the method includes determining a surface temperature of the EBC based on the intensity of the second wavelength of the fluorescent radiation.
Abstract:
The disclosure relates to an apparatus for manufacturing a metallic component, and corresponding methods. The apparatus may include a build plate with a build surface and an aperture. The apparatus may also include an actuator operable to translate a metallic component such that an end portion of the metallic component is positioned within the aperture of the build plate and below the build surface. The apparatus may further include a seal coupled within the aperture of the build plate and configured to engage the end portion of the metallic component. The aperture of the build plate, the seal, and the end portion of the metallic component may cooperate to form a powder bed to hold metallic powder therein. The apparatus may also include an external heat control mechanism operable to form a predetermined temperature profile of the end portion of the component to prevent cracking of the component.
Abstract:
A direct metal laser melting (DMLM) system for enhancing build parameters of a DMLM component includes a confocal optical system configured to measure at least one of a melt pool size and a melt pool temperature. The DMLM system further includes a computing device configured to receive at least one of the melt pool size or the melt pool temperature from the confocal optical system. Furthermore, the DMLM system includes a controller configured to control the operation of a laser device based on at least one build parameter.
Abstract:
The disclosure relates to an apparatus for manufacturing a metallic component, and corresponding methods. The apparatus may include a build plate with a build surface and an aperture. The apparatus may also include an actuator operable to translate a metallic component such that an end portion of the metallic component is positioned within the aperture of the build plate and below the build surface. The apparatus may further include a seal coupled within the aperture of the build plate and configured to engage the end portion of the metallic component. The aperture of the build plate, the seal, and the end portion of the metallic component may cooperate to form a powder bed to hold metallic powder therein. The apparatus may also include an external heat control mechanism operable to form a predetermined temperature profile of the end portion of the component to prevent cracking of the component.
Abstract:
The disclosure relates to an apparatus for manufacturing a metallic component, and corresponding methods. The apparatus may include a build plate with a build surface and an aperture. The apparatus may also include an actuator operable to translate a metallic component such that an end portion of the metallic component is positioned within the aperture of the build plate and below the build surface. The apparatus may further include a seal coupled within the aperture of the build plate and configured to engage the end portion of the metallic component. The aperture of the build plate, the seal, and the end portion of the metallic component may cooperate to form a powder bed to hold metallic powder therein. The apparatus may also include an external heat control mechanism operable to form a predetermined temperature profile of the end portion of the component to prevent cracking of the component.
Abstract:
A direct metal laser melting (DMLM) system includes a laser device configured to generate a melt pool in a powder bed based on a build parameter. In addition, the DMLM system includes a confocal optical system directed at the melt pool and configured to receive an optical signal emitted by the melt pool. The DMLM system further includes an optical sensor operatively coupled to the confocal optical system that is configured to receive the optical signal and to generate an electrical signal in response to the optical signal. A computing device is configured to receive the electrical signal from the optical sensor and to generate a control signal in response. The control signal is configured to modify the build parameter of the direct metal laser melting system in real-time to adjust at least one of a melt pool size and a melt pool temperature to achieve a desired physical property of the component.
Abstract:
An additive manufacturing system includes a laser device, a first scanning device, and an optical system. The laser device is configured to generate a laser beam, and the first scanning device is configured to selectively direct the laser beam across a powder bed. The laser beam generates a melt pool in the powder bed. The optical system includes an optical detector configured to detect electromagnetic radiation generated by the melt pool, and a second scanning device configured to direct electromagnetic radiation generated by the melt pool to the optical detector.
Abstract:
Systems, apparatus and methods provide a visual representation to users of data collected from a three dimensional manufacturing process, such as an additive manufacturing (AM) process. In an embodiment, a user device receives process data associated with a three dimensional manufacturing process, transforms the process data into visualization data compatible with a computer-aided design specification, receives a Boolean query, and then renders, in response to the Boolean query, a visual depiction on a display screen of at least one aspect of the three dimensional manufacturing process and/or the three dimensional manufacturing apparatus and/or a object being manufactured.