Abstract:
A clutch system configured to transmit torque between an input shaft and an output shaft. The clutch system may include a clutch and a lubrication supply system. The clutch may include: an input portion disposed at an end of the input shaft; an output portion disposed at an end of the output shaft; and a sliding component that slides axially between the input and output portions to engage the clutch. The lubrication supply system may include: one or more lubricant feeds for delivering a lubricant to the clutch; and one or more lubricant drains for draining the lubricant from the clutch. The one or more lubricant feeds may include one or more respective valves. The one or more valves each may be configurable between settings that vary an amount of the lubricant delivered to the clutch via the respective one of the one or more lubricant feeds.
Abstract:
A method of detecting a vibration node between a non-collocated sensor-actuator pair of a rotatable component includes applying an excitation signal to an actuator of the sensor actuator pair. The method also includes obtaining frequency response data from the sensor-actuator pair. The method further includes analyzing the frequency response data to ascertain a resonant frequency of the rotatable component. The method includes identifying a resonance/anti-resonance peak pair in the frequency response data for the non-collocated sensor-actuator pair. Furthermore, the method includes determining whether the vibration node is located between a sensor and the actuator of the non-collocated sensor-actuator pair based on the resonance/anti-resonance peak pair.
Abstract:
A counter rotating helico-axial pump is provided, the pump comprising: (a) an inner rotor comprising a plurality of outwardly extending helico-axial impeller vanes; (b) a hollow outer rotor comprising a plurality of inwardly extending helico-axial impeller vanes; (c) a single driving device configured to drive the inner rotor or the hollow outer rotor; and (d) a force transmission coupling joining the inner rotor and the hollow outer rotor and configured to permit rotation of the inner rotor and hollow outer rotor in opposite directions; wherein at least a portion of the inner rotor is disposed within the hollow outer rotor, and wherein the inner rotor, the hollow outer rotor and the helico-axial impeller vanes define a fluid flow path, and wherein the inner rotor and hollow outer rotor are configured such that at least some of adjacent helico-axial impeller vanes are configured to rotate in opposite directions.
Abstract:
A wind turbine is presented. The wind turbine includes a rotor having a plurality of blades. The wind turbine further includes a shaft coupled to the rotor. Moreover, the wind turbine includes a superconducting generator coupled to the rotor via the shaft. The superconducting generator includes an armature configured to be rotated via the shaft. The superconducting generator further includes a stationary field disposed concentric to and radially outward from the armature.
Abstract:
An armature is presented. The armature includes an armature winding having a plurality of coils, wherein each coil of the plurality of coils is spaced apart from adjacent coils and comprise includes a first side portion and a second side portion. The armature further includes a first electrically insulating winding enclosure. Furthermore, the armature includes a second electrically insulating winding enclosure disposed at a radial distance from the first electrically insulating winding enclosure, wherein the armature winding is disposed between the first electrically insulating winding enclosure and the second electrically insulating winding enclosure. Moreover, the armature includes an electrically insulating coil side separator disposed between the first side portion and the second side portion of the plurality of coils of the armature winding. A superconducting generator including the armature and a wind turbine having such superconducting generator are also presented.
Abstract:
A clutch system configured to transmit torque between an input shaft and an output shaft. The clutch system may include a clutch and a lubrication supply system. The clutch may include: an input portion disposed at an end of the input shaft; an output portion disposed at an end of the output shaft; and a sliding component that slides axially between the input and output portions to engage the clutch. The lubrication supply system may include: one or more lubricant feeds for delivering a lubricant to the clutch; and one or more lubricant drains for draining the lubricant from the clutch. The one or more lubricant feeds may include one or more respective valves. The one or more valves each may be configurable between settings that vary an amount of the lubricant delivered to the clutch via the respective one of the one or more lubricant feeds.
Abstract:
A clutch system configured to transmit torque between an input shaft and an output shaft. The clutch system includes a clutch. The clutch includes: an input portion disposed at an end of the input shaft; an output portion disposed at an end of the output shaft; a sliding component that slides axially between the input and output portions to engage the clutch; and swirl breaks. The input portion, the output portion, and the sliding component each comprises walls. The swirl breaks are affixed to a one of the walls.
Abstract:
An electric pump powered by an electric motor having a stator disposed within a hollow rotor is provided. Impellers on the rotor outer surface extend into a fluid flow path defined by the pump. One or more torque-producing rotor sections are driven by a plurality of independently controllable stator sections disposed within the rotor cavity. The relative positions of the rotor and stator are maintained by a plurality of bearings configured to allow rotation of the rotor and defining a bearing span. The pump is configured such that the stator and rotor share the same bearing span. Such an arrangement reduces motor windage losses relative to conventional motors in which the rotor is disposed within the stator, owing to a reduction in the diameter of the air gap between the stator and the rotor. In addition, the peripheral speed of the pump is increased owing to an increase in the rotor diameter.
Abstract:
A counter rotating helico-axial pump is provided, the pump comprising: (a) an inner rotor comprising a plurality of outwardly extending helico-axial impeller vanes; (b) a hollow outer rotor comprising a plurality of inwardly extending helico-axial impeller vanes; (c) a single driving device configured to drive the inner rotor or the hollow outer rotor; and (d) a force transmission coupling joining the inner rotor and the hollow outer rotor and configured to permit rotation of the inner rotor and hollow outer rotor in opposite directions; wherein at least a portion of the inner rotor is disposed within the hollow outer rotor, and wherein the inner rotor, the hollow outer rotor and the helico-axial impeller vanes define a fluid flow path, and wherein the inner rotor and hollow outer rotor are configured such that at least some of adjacent helico-axial impeller vanes are configured to rotate in opposite directions.