Abstract:
A superconducting generator includes an annular armature connectable to rotate with a rotating component of a wind turbine. A stationary annular field winding is coaxial to the armature and separated by a gap from the armature. The field winding includes superconducting coils, and there is a non-rotating support for the field winding. The non-rotating support is a torque tube. The torque tube is a member formed of a composite material, or a member formed of a plurality of segmented sections, a space frame or strut torque carrying assembly. The torque tube is connected to a thermal shield casing or a field winding housing.
Abstract:
A method is provided for forming a composite article to have a primary composite structure and an integral secondary composite structure that extends out of a plane defined by the primary composite structure. The method includes laying-up first plies to construct the primary composite structure. The first plies contain continuous reinforcement material and extend from a first zone that will define the primary composite structure into a second zone that will define the secondary composite structure. During laying-up of the first plies, additional plies are interleaved with the first plies within the second zone but not the first zone. The additional plies originate within a build-up zone between the first and second zones and extend therefrom into the second zone. After interleaving the plies, the build-up zone is deformed to orient the second zone and form the secondary composite structure that extends out of the plane defined by the continuous reinforcement material of the first plies.
Abstract:
According to present embodiments or aspects thereof, a composite booster spool with separable composite blades is provided. The blades are inserted radially from within the inner circumference of the spool and extend outwardly through the spool. The system provides a reduced weight assembly as compared to prior art metallic or composite/metallic combination systems. Additionally, the blades are separable which results in a more field-serviceable assembly over a fully integral system wherein the blades and spool are integrally formed from composites or combination of metal and composites.
Abstract:
A composite woven outlet guide vane (32) and method of forming are depicted. The guide vane (32) is formed by use of a preform structure (100) with a core (150) which is removed following the manufacture.
Abstract:
A method of manufacturing a flanged composite component is provided. The method includes coupling a composite structure to s first composite material. The method includes coupling a second composite material to the composite structure and placing a first expansion device within the composite structure. A forming element is coupled to at least one of the first composite material, the composite structure, and the second composite material against the mold. The method includes coupling a pressure element to the forming element to define a space among the mold, the forming element, and the pressure element. The method includes expanding the first expansion device to impart a force to the second composite material to move the second composite material away from the composite structure and into the space to facilitate forming a first flange.
Abstract:
A fiber preform architecture and method of making, including a plurality of fiber bands. Each band of the plurality of fiber bands is placed at a time, at a predetermined position and orientation, to generate an interwoven and interlocking pattern between the fiber bands. Each of the plurality of fiber bands is formed of a plurality of fiber tows, positioned side by side at a predetermined spacing to define one or more gaps between each tow in the fiber band and define a secondary based interleaving within each of the fiber bands. The plurality of fiber bands are interwoven in an in-plane and out-of-plane orientation by interleaving each of the plurality of fiber bands with one or more of the plurality of fiber bands previously laid down and not in a common plane. The plurality of fiber bands include three or more different orientation angles and provide uniformity in coverage.
Abstract:
A magnetic resonance imaging device is described that includes multiple magnetic coils to generate a magnetic field. Additionally, the magnetic resonance imaging device may include one or more radial gaps within some or all of the magnetic coils (e.g., primary magnetic coils, bucking coils, and so forth) in which radial spacers may be located to help preserve the homogeneity of the magnetic isocenter of the primary magnetic coils during operation.
Abstract:
A wind turbine is presented. The wind turbine includes a rotor having a plurality of blades. The wind turbine further includes a shaft coupled to the rotor. Moreover, the wind turbine includes a superconducting generator coupled to the rotor via the shaft. The superconducting generator includes an armature configured to be rotated via the shaft. The superconducting generator further includes a stationary field disposed concentric to and radially outward from the armature.
Abstract:
An armature is presented. The armature includes an armature winding having a plurality of coils, wherein each coil of the plurality of coils is spaced apart from adjacent coils and comprise includes a first side portion and a second side portion. The armature further includes a first electrically insulating winding enclosure. Furthermore, the armature includes a second electrically insulating winding enclosure disposed at a radial distance from the first electrically insulating winding enclosure, wherein the armature winding is disposed between the first electrically insulating winding enclosure and the second electrically insulating winding enclosure. Moreover, the armature includes an electrically insulating coil side separator disposed between the first side portion and the second side portion of the plurality of coils of the armature winding. A superconducting generator including the armature and a wind turbine having such superconducting generator are also presented.
Abstract:
An imaging device may include a patient bore to house a subject to be imaged, wherein the patient bore includes one or more bore tubes. The imaging device may also include a gradient coil surrounding, at least partially, the patient bore and a radio frequency (RF) shield located outside the one or more bore tubes. Additionally, the imaging device may include an RF coil located within at least one of the bore tubes.