Abstract:
A controller system configured to control an electrochromic device and method thereof are provided, wherein the controller system includes an electrochromic device having a first substantially transparent substrate, a second substantially transparent substrate approximately parallel to the first substantially transparent substrate such that a chamber is defined by the first and second substantially transparent substrates, and an electrochromic medium between the first and second substantially transparent substrates, and a controller in communication with the electrochromic device, wherein the controller is configured to monitor electrical power supplied to the electrochromic device and adjust the electrical power supplied to the electrochromic device to maintain the electrochromic device in an approximately minimum transmission state.
Abstract:
A window assembly includes a pressure pane and a bezel proximate a periphery of the pressure pane and defining an inner opening. The bezel includes an inner wall with a channel. An electro-optic element is disposed in the inner opening and is received in the channel of the inner wall. The electro-optic element operates between a transmissive condition and a dimmed condition. A surface of the electro-optic element exhibits a first level of spectral reflectivity at least when in the dimmed condition. The assembly further includes a dust cover assembly proximate the bezel. The dust cover assembly including a light transmitting sheet and a plurality of light sources disposed at edges of the light transmitting sheet and to emit light into the light transmitting sheet to illuminate the light transmitting sheet with a diffuse light.
Abstract:
An aircraft window assembly includes a pressure pane. A bezel is proximate a periphery of the pressure pane and defines an inner opening. The bezel includes an inner wall with a channel. An electro-optic element is disposed in the inner opening and is configured for reception in the channel of the inner wall. The electro-optic element is capable of operation between a transmissive condition and a dimmed condition. A dust cover is proximate the bezel. The dust cover includes an interior substrate and an exterior substrate. The interior substrate and the exterior substrate generally define a gap therebetween. A thermally absorbent liquid is disposed in the gap.
Abstract:
A variable transmittance window system is provided and includes at least one variable transmittance window. At least one energy harvesting device generates electrical power. A power supply circuitry maximizes the electrical power. At least one energy storage device is charged by the electrical power. A slave control circuitry controls a transmittance state of the at least one variable transmittance window, the slave control circuitry being powered by at least one of the power supply circuitry and the at least one energy storage device. A master control circuitry monitors the slave control circuitry, wherein the master control circuitry is operable to issue a wireless override signal to the slave control circuitry such that the slave control circuitry changes the transmittance state of the at least one variable transmittance window to an override transmittance state.
Abstract:
An electrochromic device including: (a) a first substantially transparent substrate having an electrically conductive material associated therewith; (b) a second substrate having an electrically conductive material associated therewith; (c) an electrochromic medium contained within a chamber positioned between the first and second substrates which includes: (1) a solvent; (2) an anodic material; and (3) a cathodic material, wherein both of the anodic and cathodic materials are electroactive and at least one of the anodic and cathodic materials is electrochromic; (d) wherein a seal member, the first substrate, the second substrate, and/or the chamber includes a plug associated with a fill port; and (e) wherein the plug is at least partially cured with an antimonate photo initiator and/or is a one- or two-part plug which comprises a resin or mixture of resins that are substantially insoluble and/or substantially immiscible with an associated electrochromic medium while in the uncured state.
Abstract:
An electro-optic window assembly is provided that includes a first substantially transparent substrate comprising: a first surface, a second surface, and a first peripheral edge; and a second substantially transparent substrate comprising: a third surface, a fourth surface, and a second peripheral edge. The first and second substrates define a cavity. The assembly further includes an electro-optic medium at least partially filling the cavity and configured to reduce the transmission of light viewed through the electro-optic window assembly. Further, the electro-optic window assembly is configured such that the substrates each have a theoretical maximum thermal stress of less than approximately 25 MPa upon exposure of the window assembly to an application environment.
Abstract:
A window operable to separate an interior from an exterior is disclosed. The window comprises a pressure pane and an anti-condensation assembly. The anti-condensation assembly is disposed in an interior direction relative the pressure pane. Further, the anti-condensation assembly comprises a substantially transparent substrate disposed in a spaced apart relationship relative the pressure pane. Additionally, the anti-condensation assembly comprises a resistively heatable layer associated with the first substrate. The resistively heatable layer is operable to generate heat when an electrical current is applied thereto. Accordingly, application of power to the resistively heatable layer may serve to reduce or eliminate the presence of visible condensation in the window.
Abstract:
A window operable to separate an interior from an exterior is disclosed. The window comprises a pressure pane and an anti-condensation assembly. The anti-condensation assembly is disposed in an interior direction relative the pressure pane. Further, the anti-condensation assembly comprises a substantially transparent substrate disposed in a spaced apart relationship relative the pressure pane. Additionally, the anti-condensation assembly comprises a resistively heatable layer associated with the first substrate. The resistively heatable layer is operable to generate heat when an electrical current is applied thereto. Accordingly, application of power to the resistively heatable layer may serve to reduce or eliminate the presence of visible condensation in the window.
Abstract:
A transparent photovoltaic (TPV) integrated directly into the structure of an electrochromic (EC) device is beneficial in that it can eliminate at least one substrate and provide more uniform coloring. Integration of a transparent photovoltaic with an electrochromic device may also reduce or eliminate the need for an electrical bus on a substrate. In some embodiments, positioning the TPV internally with the EC cell may eliminate the need for additional substrate layers or a conductive layer on one side of the TPV cell. Integrating a PV cell into the EC device can additionally reduce the need for external wiring and an external power supply. Alternatively, the TPV can assist in charging a battery where the battery can be used to power the EC device when there is no sunlight available.
Abstract:
A transparent photovoltaic (TPV) integrated directly into the structure of an electrochromic (EC) device is beneficial in that it can eliminate at least one substrate and provide more uniform coloring. Integration of a transparent photovoltaic with an electrochromic device may also reduce or eliminate the need for an electrical bus on a substrate. In some embodiments, positioning the TPV internally with the EC cell may eliminate the need for additional substrate layers or a conductive layer on one side of the TPV cell. Integrating a PV cell into the EC device can additionally reduce the need for external wiring and an external power supply. Alternatively, the TPV can assist in charging a battery where the battery can be used to power the EC device when there is no sunlight available.