Selective catalytic reduction steady state ammonia slip detection

    公开(公告)号:US10378463B2

    公开(公告)日:2019-08-13

    申请号:US15645424

    申请日:2017-07-10

    Abstract: Technical solutions are described for an emissions control system for a motor vehicle including an internal combustion engine. The emissions control system includes a selective catalytic reduction (SCR) device, an NOx sensor, and a controller for ammonia slip detection. The ammonia slip detection includes comparing an NOx measurement from the NOx sensor with a predicted NOx value. In response to the NOx measurement exceeding the predicted NOx value by a threshold value, the threshold value being calibrated to a first predetermined value, the threshold value is calibrated to a second predetermined value, a timer is initiated to a predetermined duration, and during the predetermined duration of the timer, in response to a second NOx measurement from the NOx sensor exceeding the predicted NOx value by the threshold value set to the second predetermined value, a reductant dosing rate of the SCR device is adapted according to the second predetermined value.

    Methods for controlling selective catalytic reduction systems

    公开(公告)号:US10323559B1

    公开(公告)日:2019-06-18

    申请号:US15838823

    申请日:2017-12-12

    Abstract: A selective catalytic reduction device (SCR) system performs intrusive steady state dosing correction (SSDC) when a NOx error between a predicted and measured downstream NOx value exceeds a threshold. In SSDC, if NOx breakthrough or NH3 slip is detected above a SSDC threshold, a short term reductant dosing adaptation occurs. Optionally long term dosing adaptations occur if the magnitude of previous short term adaptations exceed a short term adaptation threshold. If SSDC is insufficiently improving SCR performance based on the number of intrusive events occurring within a period of time and the change in NOx error during the time period, a method includes modifying the SSDC protocol by one or more of increasing the duration of short term adaptations, decreasing the SSDC threshold, and reducing the short term adaptation threshold. The method further includes subsequently inhibiting intrusive events from occurring.

    Exhaust treatment system including ammonia storage control system

    公开(公告)号:US10247076B2

    公开(公告)日:2019-04-02

    申请号:US15481941

    申请日:2017-04-07

    Abstract: A vehicle includes an engine that combusts an air/fuel mixture to produce an exhaust gas stream containing oxides of nitrogen (NOx). A dosing system injects an amount of ammonia (NH3) into the exhaust gas stream based on an initial NH3 injection set point value. A selective catalyst reduction (SCR) device absorbs an amount of the NH3 contained in the exhaust gas stream and reduces an amount of NOx. An electronic hardware controller predicts an NH3 slip condition during which a portion the absorbed NH3 will slip from the SCR device, and modifies the initial NH3 injection set point value based on the predicted NH3 slip condition. The controller further generates a modified NH3 injection set point signal indicating an adjusted amount of the NH3 to inject during the predicted NH3 slip condition. The dosing system adjusts the amount of injected NH3 based on the modified NH3 injection set point signal.

    Predictive control for slip and breakthrough determination of selective catalytic reduction systems

    公开(公告)号:US10082061B1

    公开(公告)日:2018-09-25

    申请号:US15451447

    申请日:2017-03-07

    Abstract: Disclosed are SCR predictive control systems, methods for using such control systems, and motor vehicles with SCR employing predictive control. A method for regulating operation of an SCR system includes receiving sensor signals indicative of NOx output downstream from an SCR catalyst, and sensor signals indicative of exhaust gas temperature upstream from the SCR catalyst. The method determines if a model error condition has occurred for the NOx output signal and, responsive to such an occurrence, modulating dosing injector output for at least a calibrated designated time period. Upon expiration of the designated time period, the dosing injector is activated and commanded to inject reductant in accordance with a modulated dosing value. After the dosing injector injects the modulated dosing value of reductant, the method determines if the SCR system is underdosing or overdosing based on a response shape of signals received from the outlet NOx content sensor.

Patent Agency Ranking