EMISSIONS CONTROL SYSTEM OF A COMBUSTION ENGINE EXHAUST SYSTEM

    公开(公告)号:US20190063285A1

    公开(公告)日:2019-02-28

    申请号:US15688432

    申请日:2017-08-28

    Inventor: Po-I Lee Sarah Funk

    Abstract: An emissions control system includes a Selective Catalytic Reduction device adapted to reduce emissions, an injector adapted to inject a reductant into the device, a NOx sensor disposed downstream of the device, a controller, an iterative model, and a table. The controller is configured to perform short and long term control by confirming at least one short term criteria is met. Once confirmed, the controller calculates a normalized model error utilizing the model and a signal received from the sensor, and integrates the normalized model error. If the integrated normalized model error exceeds a threshold, the controller proceeds toward the long term control. If a long term criteria is met, a current long term factor and the integrated normalized model error is applied to the table to determine a new long term factor. The new long term factor is multiplied against an energization time of the injector.

    Methods for controlling selective catalytic reduction systems

    公开(公告)号:US10323559B1

    公开(公告)日:2019-06-18

    申请号:US15838823

    申请日:2017-12-12

    Abstract: A selective catalytic reduction device (SCR) system performs intrusive steady state dosing correction (SSDC) when a NOx error between a predicted and measured downstream NOx value exceeds a threshold. In SSDC, if NOx breakthrough or NH3 slip is detected above a SSDC threshold, a short term reductant dosing adaptation occurs. Optionally long term dosing adaptations occur if the magnitude of previous short term adaptations exceed a short term adaptation threshold. If SSDC is insufficiently improving SCR performance based on the number of intrusive events occurring within a period of time and the change in NOx error during the time period, a method includes modifying the SSDC protocol by one or more of increasing the duration of short term adaptations, decreasing the SSDC threshold, and reducing the short term adaptation threshold. The method further includes subsequently inhibiting intrusive events from occurring.

    SELECTIVE CATALYTIC REDUCTION STEADY STATE AMMONIA SLIP AND REDUCTANT BREAKTHROUGH DETECTION

    公开(公告)号:US20190010851A1

    公开(公告)日:2019-01-10

    申请号:US15643987

    申请日:2017-07-07

    Abstract: Technical solutions are described for an emissions control system for a motor vehicle including an internal combustion engine. An example emissions control system for treating exhaust gas in a motor vehicle including an internal combustion engine. For example, the emissions control system includes a selective catalytic reduction (SCR) device, an NOx sensor, and a controller that is configured to detect a NH3 slip of the SCR device. The controller detects the NH3 slip by modulating an engine out NOx from an engine, demodulating the engine out NOx from the engine to original state, and measuring NOx upstream and downstream from the SCR device after the modulation. Further, the controller determines the NH3 slip by comparing gradients in the NOx measurement with one or more predetermined thresholds.

    AGGRESSIVE THERMAL HEATING TARGET STRATEGY BASED ON NOX ESTIMATED FEEDBACK

    公开(公告)号:US20200291877A1

    公开(公告)日:2020-09-17

    申请号:US16299792

    申请日:2019-03-12

    Abstract: A method for controlling an engine thermal target setpoint, includes: identifying in a first step an initial NOx integral at an initial calculated cylinder wall temperature and a thermal set point of an engine coolant; initiating a command in a second step to change the initial cylinder wall temperature and to change the thermal set point of the engine coolant; creating in a third step a new NOx integral at a new cylinder wall temperature and a modified thermal set point of the engine coolant; and comparing in a fourth step: is (the new NOx integral minus the initial NOx integral) greater than a predefined minimum threshold; and is (the new NOx integral minus the initial NOx integral) less than a predefined maximum threshold.

    METHODS FOR CONTROLLING SELECTIVE CATALYTIC REDUCTION SYSTEMS

    公开(公告)号:US20190178131A1

    公开(公告)日:2019-06-13

    申请号:US15838823

    申请日:2017-12-12

    Abstract: A selective catalytic reduction device (SCR) system performs intrusive steady state dosing correction (SSDC) when a NOx error between a predicted and measured downstream NOx value exceeds a threshold. In SSDC, if NOx breakthrough or NH3 slip is detected above a SSDC threshold, a short term reductant dosing adaptation occurs. Optionally long term dosing adaptations occur if the magnitude of previous short term adaptations exceed a short term adaptation threshold. If SSDC is insufficiently improving SCR performance based on the number of intrusive events occurring within a period of time and the change in NOx error during the time period, a method includes modifying the SSDC protocol by one or more of increasing the duration of short term adaptations, decreasing the SSDC threshold, and reducing the short term adaptation threshold. The method further includes subsequently inhibiting intrusive events from occurring.

    Methods for controlling and detecting catalyst poisoning of selective catalytic reduction devices

    公开(公告)号:US10215072B2

    公开(公告)日:2019-02-26

    申请号:US15467312

    申请日:2017-03-23

    Abstract: Method for controlling and detecting ammonium nitrate and/or ammonium nitrite poisoning within selective catalytic reduction (SCR) devices and systems incorporating the same are provided. Methods can include detecting a SCR inlet exhaust gas NO2:NOx ratio above a poisoning NOx flux threshold, detecting a SCR temperature below a poisoning temperature threshold, and determining SCR catalyst poisoning. Methods can further include performing a SCR catalyst cleaning strategy, wherein the SCR cleaning strategy comprises heating the SCR catalyst composition to a temperature above the poisoning temperature threshold. Cleaning strategies can including utilizing a heater, implementing a post-injection, after-injection, and/or auxiliary injection engine strategy wherein the engine is configured to supply exhaust gas to the SCR. Methods can further include arresting reductant dosing, identifying an opportunistic regeneration opportunity, and/or inhibiting performance of an appurtenant oxidation catalyst subsequent to determining SCR catalyst poisoning. The SCR catalyst composition can comprise iron and/or copper.

Patent Agency Ranking