Abstract:
Aspects of this disclosure provide systems and methods for generating models of a wireless network environment in an indoor space which may be used to predict an indoor location. The disclosure relates to collecting wireless network access point identifier information and power level observed at various locations are collected to generate various signal maps. The signal maps may be used to generate models of the indoor space. In one example, a voting model may use a probability distribution of a plurality of signal maps in order to identify a location with a highest probability of overlap with current signals received at a client device. Once a location has been identified, it may be used to assist with any number of navigational functions, such as providing turn by turn directions to another indoor location, for example, a conference room or exit, or simply providing information about the current location.
Abstract:
Systems and methods provide approximations of latitude and longitude coordinates of objects, for example a business, in street level images. The images may be collected by a camera. An image of a business is collected along with GPS coordinates and direction of the camera. Depth maps of the images may be generated, for example, based on laser depth detection or displacement of the business between two images caused by a change in the position of the camera. After identifying a business in one or more images, the distance from the camera to a point or area relative to the business in the one or more images may be determined based on the depth maps. Using this distance and the direction of the camera which collected the one or more images and GPS coordinates of the camera, the approximate GPS coordinates of the business may be determined.
Abstract:
Aspects of the present disclosure provide systems and methods for generating models of a wireless network environment in an indoor space which may be used to predict an indoor location. The disclosure relates to collecting wireless network access point identifier information and power level observed at various locations are collected to generate various signal maps. The signal maps may be used to generate models of the indoor space. In one example, a voting model may use a probability distribution of a plurality of signal maps in order to identify a location with a highest probability of overlap with current signals received at a client device. Once a location has been identified, it may be used to assist with any number of navigational functions, such as providing turn by turn directions to another indoor location, for example, a conference room or exit, or simply providing information about the current location.
Abstract:
Objects, such as road signs, may be detected in real-time using a camera or other image capture device. As images are received through the camera, candidate signs are first detected. The detection of candidate signs employs constant-time normalized cross correlation, including generation of intermediate images and integral images, and applying a template of concentric, different sized shapes over the integral images. From the pool of candidate signs, false positives may be separated out using shape classification to identify actual road signs.
Abstract:
Methods and systems permit automatic matching of videos with images from dense image-based geographic information systems. In some embodiments, video data including image frames is accessed. The video data may be segmented to determine a first image frame of a segment of the video data. Data representing information from the first image frame may be automatically compared with data representing information from a plurality of image frames of an image-based geographic information data system. Such a comparison may, for example, involve a search for a best match between geometric features, histograms, color data, texture data, etc. of the compared images. Based on the automatic comparing, an association between the video and one or more images of the image-based geographic information data system may be generated. The association may represent a geographic correlation between selected images of the system and the video data.