Abstract:
An electrical receptacle may include a first row of electrical contacts extending along a side of the receptacle a first distance from an opening of the electrical receptacle and a second row of electrical contacts extending along the side of the receptacle a second distance from the opening of the electrical receptacle. The first row of electrical contacts may include a first receptacle differential signaling pair closer to a center of the first row of electrical contacts than a second receptacle differential signaling pair in the first row of electrical contacts. The second row of electrical contacts may include a third receptacle differential signaling pair closer to a center of the second row of electrical contacts than remaining contacts in the second row of electrical contacts.
Abstract:
An electrical connector may include a cord comprising wires and a plug extending from the cord. The plug may include a first top row of contacts included in a top portion of the plug and a first bottom row of contacts included in a bottom portion of the plug. The first top row of contacts may be coupled to the plurality of wires and include a first top differential signaling pair configured to carry signals according to a first communication protocol, and a second top differential signaling pair configured to carry signals according to a second communication protocol. The first bottom row of contacts may be coupled to the first top row of contacts and arranged to maintain a same arrangement of contacts and electrical paths as the first top row of contacts to the plurality of wires when the plug is rotated one hundred and eighty degrees.
Abstract:
A cord assembly includes a first end including a Universal Serial Bus (USB) Type-C connector, a second end including a Universal Serial Bus (USB) Type-C connector, a flexible, electrically-conductive cord connecting the first and second ends, an LED light disposed at the first end, an accelerometer configured to generate a signal in response to a predetermined amount of movement of the accelerometer, and a controller coupled to the light and the accelerometer. The controller is configured to, when the second end is connected to a power source and when the first end is not connected to a device, in response to receipt of the signal generated by the accelerometer in response to movement of the accelerometer, control supply of power to the light to illuminate the light.
Abstract:
A computing device includes one or more memory devices storing executable instructions, one or more processors configured to execute the instructions, a programmable display screen configured to display text-based information, a user activity sensor, a battery configured to provide power to the one or more processors, and a battery status visual indicator. The battery status indicator is located on a surface of the computing device and is configured to display, in response an indication from the user activity sensor of an interaction by a user with the computing device, non-text-based information indicating a status of the battery.
Abstract:
An electrical connector may include a cord comprising a plurality of wires and a plug extending from the cord. The plug may include a row of conductive signal pads arranged in a plane across the plug, the pads in the row being coupled to the plurality of wires, a plurality of conductive ground traces arranged in the plane across the plug and extending between the pads in the row, with at least one trace extending between adjacent pads, and a ground pad arranged in the plane and located adjacent to the row of conductive signal pads.
Abstract:
An electrical connector may include a cord comprising a plurality of wires and a plug extending from the cord. The plug may include a top portion and an opposing bottom portion, which each include a plurality of contacts. The plurality of contacts on each of the top portion and opposing bottom portion may include at least two contacts with a first distance from a front portion of the plug and at least one contact with a second distance from the front of the plug. Each of the plurality of contacts on the top portion may be coupled to one of the plurality of wires and to one of the plurality of contacts on the bottom portion. The coupling may be configured to maintain a same arrangement of contacts and electrical paths to the plurality of wires when the plug is rotated one hundred eighty degrees.
Abstract:
An electrical connector may include a printed circuit board (PCB), the PCB including a plurality of contacts, a plurality of wires coupled to the plurality of contacts on the PCB, a non-conductive pad extending across the PCB, a plurality of pins extending across the non-conductive pad, and an overmold. The plurality of pins may be coupled to the plurality of contacts. The overmold may cover at least a portion of the PCB and at least a first portion of each of the plurality of pins. The overmold may include a first aperture exposing at least a second portion of each of the plurality of pins.