Abstract:
The overall architecture and details of a scalable video fingerprinting and identification system that is robust with respect to many classes of video distortions is described. In this system, a fingerprint for a piece of multimedia content is composed of a number of compact signatures, along with traversal hash signatures and associated metadata. Numerical descriptors are generated for features found in a multimedia clip, signatures are generated from these descriptors, and a reference signature database is constructed from these signatures. Query signatures are also generated for a query multimedia clip. These query signatures are searched against the reference database using a fast similarity search procedure, to produce a candidate list of matching signatures. This candidate list is further analyzed to find the most likely reference matches. Signature correlation is performed between the likely reference matches and the query clip to improve detection accuracy.
Abstract:
A multi-dimensional database and indexes and operations on the multi-dimensional database are described which include video search applications or other similar sequence or structure searches. Traversal indexes utilize highly discriminative information about images and video sequences or about object shapes. Global and local signatures around keypoints are used for compact and robust retrieval and discriminative information content of images or video sequences of interest. For other objects or structures relevant signature of pattern or structure are used for traversal indexes. Traversal indexes are stored in leaf nodes along with distance measures and occurrence of similar images in the database. During a sequence query, correlation scores are calculated for single frame, for frame sequence, and video clips, or for other objects or structures.
Abstract:
A mobile device responds in real time to media content presented on a media device, such as a television. The mobile device captures temporal fragments of audio-video content on its microphone, camera, or both and generates corresponding audio-video query fingerprints. The query fingerprints are transmitted to a search server located remotely or used with a search function on the mobile device for content search and identification. Audio features are extracted and audio signal global onset detection is used for input audio frame alignment. Additional audio feature signatures are generated from local audio frame onsets, audio frame frequency domain entropy, and maximum change in the spectral coefficients. Video frames are analyzed to find a television screen in the frames, and a detected active television quadrilateral is used to generate video fingerprints to be combined with audio fingerprints for more reliable content identification.
Abstract:
The overall architecture and details of a scalable video fingerprinting and identification system that is robust with respect to many classes of video distortions is described. In this system, a fingerprint for a piece of multimedia content is composed of a number of compact signatures, along with traversal hash signatures and associated metadata. Numerical descriptors are generated for features found in a multimedia clip, signatures are generated from these descriptors, and a reference signature database is constructed from these signatures. Query signatures are also generated for a query multimedia clip. These query signatures are searched against the reference database using a fast similarity search procedure, to produce a candidate list of matching signatures. This candidate list is further analyzed to find the most likely reference matches. Signature correlation is performed between the likely reference matches and the query clip to improve detection accuracy.
Abstract:
An efficient large scale search system for video and multi-media content using a distributed database and search, and tiered search servers is described. Selected content is stored at the distributed local database and tier1 search server(s). Content matching frequent queries, and frequent unidentified queries are cached at various levels in the search system. Content is classified using feature descriptors and geographical aspects, at feature level and in time segments. Queries not identified at clients and tier1 search server(s) are queried against tier2 or lower search server(s). Search servers use classification and geographical partitioning to reduce search cost. Methods for content tracking and local content searching are executed on clients. The client performs local search, monitoring and/or tracking of the query content with the reference content and local search with a database of reference fingerprints. This shifts the content search workload from central servers to the distributed monitoring clients.
Abstract:
The overall architecture and details of a scalable video fingerprinting and identification system that is robust with respect to many classes of video distortions is described. In this system, a fingerprint for a piece of multimedia content is composed of a number of compact signatures, along with traversal hash signatures and associated metadata. Numerical descriptors are generated for features found in a multimedia clip, signatures are generated from these descriptors, and a reference signature database is constructed from these signatures. Query signatures are also generated for a query multimedia clip. These query signatures are searched against the reference database using a fast similarity search procedure, to produce a candidate list of matching signatures. This candidate list is further analyzed to find the most likely reference matches. Signature correlation is performed between the likely reference matches and the query clip to improve detection accuracy.
Abstract:
Methods, apparatus, systems, and articles of manufacture are disclosed to improve media identification. An example apparatus includes a hash handler to generate a first set of reference matches by performing hash functions on a subset of media data associated with media to generate hashed media data based on a first bucket size, a candidate determiner to identify a second set of reference matches that include ones of the first set, the second set including ones having first quantities of hits that did not satisfy a threshold, determine second quantities of hits for ones of the second set by matching ones to the hash tables based on a second bucket size, and identify one or more candidate matches based on at least one of (1) ones of the first set or (2) ones of the second set, and a report generator to generate a report including a media identification.
Abstract:
Methods, apparatus, systems, and articles of manufacture are disclosed to improve media identification. An example apparatus includes a hash handler to generate a first set of reference matches by performing hash functions on a subset of media data associated with media to generate hashed media data based on a first bucket size, a candidate determiner to identify a second set of reference matches that include ones of the first set, the second set including ones having first quantities of hits that did not satisfy a threshold, determine second quantities of hits for ones of the second set by matching ones to the hash tables based on a second bucket size, and identify one or more candidate matches based on at least one of (1) ones of the first set or (2) ones of the second set, and a report generator to generate a report including a media identification.
Abstract:
A mobile device responds in real time to media content presented on a media device, such as a television. The mobile device captures temporal fragments of audio-video content on its microphone, camera, or both and generates corresponding audio-video query fingerprints. The query fingerprints are transmitted to a search server located remotely or used with a search function on the mobile device for content search and identification. Audio features are extracted and audio signal global onset detection is used for input audio frame alignment. Additional audio feature signatures are generated from local audio frame onsets, audio frame frequency domain entropy, and maximum change in the spectral coefficients. Video frames are analyzed to find a television screen in the frames, and a detected active television quadrilateral is used to generate video fingerprints to be combined with audio fingerprints for more reliable content identification.
Abstract:
In one aspect, an example method includes (i) presenting, by a playback device, first media content from a first source; (ii) encountering, by the playback device, a trigger to switch from presenting the first media content from the first source to presenting second media content from a second source; (iii) determining, by the playback device, that the playback device is presenting the first media content from the first source in a muted state; and (iv) responsive to encountering the trigger, and based on the determining that the playback device is presenting the first media content from the first source in a muted state, presenting, by the playback device, the second media content from the second source in the muted state.