Abstract:
A method of identifying bounded hydrocarbon formations of interest in a seismic data set includes obtaining a seismic data set, pre-processing the seismic data set, inputting the plurality of graphical model inputs and one or more rules to a graphical model, wherein the rules define a relationship between a plurality of attributes of a bounded hydrocarbon formation, running a graphical model on the graphical model inputs, post-processing the graphical model outputs, and displaying the ranked clusters in order of rank.
Abstract:
A method includes retrieving a seismic data set, receiving training data that includes one or more seed points of an identified geobody, determining a geobody trajectory of the identified geobody, based on the one or more seed points of the identified geobody, displaying the geobody trajectory, receiving inputs expanding the geobody trajectory, shrinking the geobody trajectory, confirming the geobody trajectory, or a combination thereof, training a classification algorithm using the geobody trajectory, running the classification algorithm on the seismic data set, receiving an output of one or more sets of voxels from the classification algorithm, skeletonizing the one or more sets of voxels to present the one or more sets of voxels as a set of possible geobody trajectories, and retraining the classification algorithm based on feedback received from a reviewer.
Abstract:
Approaches related to performing calibration of a CT scanner or of processes (e.g., correction and/or reconstruction) performed on acquired CT scan data are described. In certain described approaches, calibration is attained without performing a calibration scan using a dedicated calibration phantom. In certain embodiments, calibration is performed using a feature intrinsic to the imaged object, such as a jacket disposed about a drilled core sample.
Abstract:
A system monitoring an additive manufacturing (AM) machine recoat operation includes an automatic defect recognition subsystem having a predictive model catalog each applicable to a product and to one recoat error indication having a domain dependent feature, the predicative models representative of a recoat error indication appearance at a pixel level of an image captured during recoat operations. The system includes an online monitoring subsystem having an image classifier unit that classifies recoat error indications at the pixel level based on predictive models selected on their metadata, a virtual depiction unit that creates a virtual depiction of an ongoing AM build from successive captured image, and a processor unit to monitor the build for recoat error indications, classify a detected indication, and provide a determination regarding the severity of the detected indication on the ongoing build. A method and a non-transitory computer-readable medium are also disclosed.
Abstract:
A method includes accessing a seismic image comprising a plurality of features of interest. The method also includes defining a plurality of configuration files for a plurality of graphical models. The method further includes applying the plurality of graphical models to the seismic image. The method also includes generating a plurality of scores for each feature of interest, wherein each graphical model generates a score for each feature of interest. The method further includes combining the plurality of scores for each feature of interest into a plurality of combined scores, wherein each feature of interest has a combined score.
Abstract:
A method includes retrieving a seismic data set, receiving training data that includes one or more seed points of an identified geobody, determining a geobody trajectory of the identified geobody, based on the one or more seed points of the identified geobody, displaying the geobody trajectory, receiving inputs expanding the geobody trajectory, shrinking the geobody trajectory, confirming the geobody trajectory, or a combination thereof, training a classification algorithm using the geobody trajectory, running the classification algorithm on the seismic data set, receiving an output of one or more sets of voxels from the classification algorithm, skeletonizing the one or more sets of voxels to present the one or more sets of voxels as a set of possible geobody trajectories, and retraining the classification algorithm based on feedback received from a reviewer.
Abstract:
A monitoring system for determining component wear is provided. The monitoring system includes a memory device configured to store a reference model of a component and a component wear monitoring (CWM) device configured to receive a component image of a first component being inspected, detect a plurality of manmade structural features in the received component image, adjust the component image to mask out at least some of the plurality of manmade structural features from the received component image, compare the adjusted component image with the reference model to determine one or more potential defect areas in the first component, analyze each of the one or more defect areas to determine a state of the potential defect areas, and output the state of the one or more potential defect areas to a user.
Abstract:
A method for identifying a plurality of features of interest in a seismic image includes ranking each feature of interest. The method also includes modeling a relationship between the rank of each feature of interest and a user rating of the feature of interest. The method further includes updating the ranking of the plurality of features of interest, including (1) receiving a user rating for one feature of interest that has not been previously rated by a user; (2) updating the model of the relationship between the rank of each feature of interest and the user rating of the feature of interest based on the user rating; (3) applying the model to the ranking of the plurality of features of interest; and (4) repeating steps (1)-(3) until a termination criterion is met.
Abstract:
A method includes accessing a seismic image comprising a plurality of features of interest. The method also includes defining a plurality of configuration files for a plurality of graphical models. The method further includes applying the plurality of graphical models to the seismic image. The method also includes generating a plurality of scores for each feature of interest, wherein each graphical model generates a score for each feature of interest. The method further includes combining the plurality of scores for each feature of interest into a plurality of combined scores, wherein each feature of interest has a combined score.
Abstract:
A computationally efficient dictionary learning-based term is employed in an iterative reconstruction framework to keep more spatial information than two-dimensional dictionary learning and require less computational cost than three-dimensional dictionary learning. In one such implementation, a non-local regularization algorithm is employed in an MBIR context (such as in a low dose CT image reconstruction context) based on dictionary learning in which dictionaries from different directions (e.g., x,y-plane, y,z-plane, x,z-plane) are employed and the sparse coefficients calculated accordingly. In this manner, spatial information from all three directions is retained and computational cost is constrained.