Abstract:
A method for compensating for flicker induced by a wind turbine power system connected to a power grid includes operating a power converter of the wind turbine power system based on a nominal reactive current command and a nominal torque command. In response to receiving a periodic torque command modifier, the method includes determining a reactive current command modifier for the power converter based on one or more operational parameters of the wind turbine power system and/or the power grid and the torque command modifier. The method also includes simultaneously modifying the nominal reactive current command as a function of the reactive current command modifier and the nominal torque command as a function of the torque command modifier. Accordingly, modifying the nominal torque command causes low-frequency voltage variations in the power grid and simultaneously modifying the reactive current command attenuates the low-frequency voltage variations.
Abstract:
The present invention discloses a power generation system including a double-fed induction generator, a power converter, and a controller. The double-fed induction generator includes a rotor and a stator coupled to a grid. The power converter includes a rotor side converter coupled to the rotor of the generator, a grid side converter coupled to the grid, and a DC bus coupled between the rotor side converter and the grid side converter. The controller includes a rotor side controller for controlling the rotor side converter and a grid side controller for controlling the grid side converter. The rotor side controller includes a compensator having a transfer function and configured to counter a negative resistance effect of the generator to suppress sub-synchronous oscillations. The present invention further discloses a system for suppressing sub-synchronous oscillations and a method for controlling operation of a power system.
Abstract:
A system and method for controlling voltage of a DC link of a power converter of a wind turbine power system connected to a power grid includes operating the DC link to an optimum voltage set point that achieves steady state operation of the power converter. The method also includes monitoring a speed of the wind turbine power system. Upon detection of one or more speed conditions occurring in the wind turbine power system, the method includes selecting a first maximum voltage set point for the DC link or a second maximum voltage set point for the DC link. Moreover, the method includes increasing the optimum voltage set point to the selected first or second maximum voltage set point of the DC link. In addition, the method includes operating the DC link at the selected first or second maximum voltage set point until the one or more speed conditions passes so as to optimize voltage control of the DC link.
Abstract:
A method for operating a renewable energy power system driven by at least one renewable energy power source and having at least one current conversion device includes determining a temperature of power semiconductor device(s) of the current conversion device(s). The method also includes determining whether an amount of power of the renewable energy power source(s) is above a predetermined threshold. Further, the method includes increasing or maintaining the temperature of the power semiconductor device(s) during periods of time when the amount of the renewable energy power source(s) is below the predetermined threshold.
Abstract:
A power converter assembly for an electrical power system connected to a power grid includes a rotor-side converter configured for coupling to a generator rotor of a generator of the electrical power system, a line-side converter electrically coupled to rotor-side converter via a DC link, and a dynamic brake assembly electrically coupled to the DC link. The line-side converter is configured for coupling to the power grid. The dynamic brake assembly includes a plurality of switching devices connected in parallel and a plurality of inductors electrically coupled between the plurality of switching devices.
Abstract:
A method for compensating for flicker induced by a generator connected to a power grid includes determining, via a controller of the wind turbine, a nominal reactive current command for a rotor of the generator. The method also includes measuring, via at least sensor, one or more operational parameters of at least one of the generator or the power grid. Further, the method includes determining, via a flicker compensation device, a flicker compensation parameter as a function of the one or more operational parameters. Moreover, the method includes determining, via the controller, a net reactive current command for the rotor as a function of the flicker compensation parameter and the nominal reactive current command. In addition, the method includes controlling, via the controller, the rotor of the generator based on the net reactive current command.
Abstract:
A method for protecting a three-winding transformer of a wind turbine includes estimating, via a controller, an electrical condition of the primary winding of the transformer. The method also includes determining, via the controller, an electrical condition limit of the primary winding. The method also includes comparing, via the controller, the estimated electrical condition to the electrical condition limit. Further, the method includes implementing a corrective action for the wind turbine if the estimated electrical condition exceeds the electrical condition limit so as to reduce the electrical condition within safe limits.
Abstract:
A method for operating an electrical power system includes disabling bridge switching of one of the rotor-side converter or line-side converter. The method further includes gating on the dynamic brake after the disabling occurs, comparing a power converter input variable to a primary predetermined variable threshold, and forcing the gated-on dynamic brake to a 100 percent duty cycle when the power converter input variable exceeds the primary predetermined variable threshold.
Abstract:
A method for controlling a power generation system connected to a weak grid may generally include operating a power converter of the system so as to produce current at or above a power factor threshold associated with a power factor operating requirement for the system, detecting that a generator speed of the system has increased over a period of time, detecting that a local reference voltage for the system has decreased within the same period of time over which the generator speed has increased and adjusting the operation of the power converter to produce current at a reduced power factor below the power factor threshold so as to increase a real power output of the system.
Abstract:
The present subject matter is directed to systems and methods for improving reliability of dual bridge doubly fed induction generators (DFIGs) by reducing the number of required components in the converters associated with such DFIGs. A converter is constructed using a pair of current conducting bridges wherein one of the current conducting bridges is controlled and the second is not controlled. The uncontrolled bridge may correspond to a pair of diodes while the controlled bridge may correspond to a pair of transistors, in particular, a pair of IGBT transistors.