Abstract:
A model-based control system is configured to select a desired parameter of a machinery configured to produce power and to output emissions and to select an emissions model configured to use the desired parameter as input and to output an emissions parameter. The model-based control system is additionally configured to tune the emissions model via a tuning system to derive a polynomial setpoint, and to control one or more actuators coupled to the machinery based on the polynomial setpoint.
Abstract:
A system for managing multiple power assets is provided. The system includes at least one volatile asset, at least one deterministic asset, and a controller communicatively coupled to the at least one volatile asset and the at least one deterministic asset, the controller configured to receive data from said at least one volatile asset, predict a change in power output for said at least one volatile asset based on the received data, and control operation of said at least one deterministic asset to compensate for the predicted change in power output.
Abstract:
A system includes a risk assessment system. The risk assessment system includes a risk calculation system configured to calculate a risk based on one or more static inputs and one or more dynamic inputs. The one or more dynamic inputs includes a location of a human resource, a mobile resource, or a combination thereof. The risk assessment system further includes a decision support system (DSS) configured to use the risk to derive one or more decisions based on the risk, the one or more static inputs, and the one or more dynamic inputs. The one or more decisions are configured to aid in operating an industrial facility.
Abstract:
A system may include a model library configured to model a system, wherein the model library comprises a plurality of subsystem models, and each of the plurality of subsystem models is configured to derive a reliability measure. The system further includes a fault tolerance input and a maintenance policy input. The system further includes a dynamic risk calculation engine (DRCE) configured to use a user-defined set of the plurality of subsystem models, the fault tolerance input and the maintenance policy input, to derive a system risk for an apparatus.
Abstract:
In accordance with one aspect of the present technique a method includes receiving at least one of a speed and an acceleration of a rotating component in a rotating machine. The method includes determining whether at least one of the speed and the acceleration of the rotating component exceeds a non-trip operating (NTO) space in a speed-acceleration plane, wherein the NTO space is based on a trip overshoot model. The method further includes sending a notification for tripping the rotating machine in response to determining that at least one of the speed and the acceleration of the rotating component exceeds the NTO space.
Abstract:
A system may include a model library configured to model a system, wherein the model library includes a plurality of subsystem models, and each of the plurality of subsystem models is configured to derive a reliability measure. The system further includes a fault tolerance input and a maintenance policy input. The system further includes a dynamic risk calculation engine (DRCE) configured to use a user-defined set of the plurality of subsystem models, the fault tolerance input and the maintenance policy input, to derive a system risk for an apparatus.
Abstract:
A system may include a dynamic risk calculation engine (DRCE) system. The DRCE includes a model library configured to model a system, wherein the model library comprises a plurality of subsystem models, and each of the plurality of subsystem models is configured to derive a reliability measure. The DRCE further includes a fault tolerance input and a maintenance policy input. The DRCE additionally includes a run-time risk calculation engine configured to use a user-defined set of the plurality of subsystem models, the fault tolerance input, and the maintenance policy input, to derive a system risk for an apparatus.
Abstract:
In accordance with one aspect of the present technique a method includes receiving at least one of a speed and an acceleration of a rotating component in a rotating machine. The method includes determining whether at least one of the speed and the acceleration of the rotating component exceeds a non-trip operating (NTO) space in a speed-acceleration plane, wherein the NTO space is based on a trip overshoot model. The method further includes sending a notification for tripping the rotating machine in response to determining that at least one of the speed and the acceleration of the rotating component exceeds the NTO space.