-
公开(公告)号:US12124283B2
公开(公告)日:2024-10-22
申请号:US17624244
申请日:2020-07-02
Applicant: CLIMEON AB
Inventor: Rikard Pettersson
CPC classification number: G05D7/0635 , G05B15/02 , F01K13/02
Abstract: A method and controller of dynamically determining a current system curve in a heat power system, in which the heat power system comprises a regulator and sensors. The controller controls an output of the regulator to find the current system curve, collects and checks sensor values with limited accuracy to determine if properties of the sensor values indicate that a point of the current system curve has been reached. When at least two points are found the controller models the current system curve by linear interpolation between the first and second point of the current system curve.
-
公开(公告)号:US12116907B1
公开(公告)日:2024-10-15
申请号:US18323711
申请日:2023-05-25
Applicant: GENERAL ELECTRIC COMPANY
Inventor: Dimitrios V. Doupis , Denis Bruno , Steven Kurdziel , Stewart Wyatt , Carmen Joseph Marrone , Hugo Enrique Soto Barragan
CPC classification number: F01K23/101 , F01K13/02
Abstract: The present application provides a steam discharge pipe blowback protection system for use with a steam discharge pipe and a flow of steam therethrough. The steam discharge pipe blowback protection system may include a vent stack pipe and a drip pan with an exit end of the steam discharge pipe extending through the drip pan and into the vent stack pipe. The drip pan includes a slide plate positioned around the steam discharge pipe such that a blowback in the flow of steam causes the slide plate to seal the drip pan.
-
公开(公告)号:US12060813B2
公开(公告)日:2024-08-13
申请号:US18085456
申请日:2022-12-20
Applicant: Source Global, PBC
Inventor: Cody Friesen , Heath Lorzel
CPC classification number: F01K13/02 , B01D53/0438 , B01D53/261 , B01D53/263 , B01D2251/302 , B01D2251/304 , B01D2251/306 , B01D2251/402 , B01D2251/404 , B01D2253/102 , B01D2253/104 , B01D2253/108 , B01D2253/11 , B01D2253/1124 , B01D2259/40098
Abstract: This disclosure is related to systems, methods, apparatuses, and techniques for generating water using waste heat. In certain embodiments, a system includes a water generating unit and a waste-heat-generating-system. The water generating unit can be configured to generate the water and comprises a desiccation device and a condenser coupled to the desiccation device. The waste-heat-generating-system can generate the waste heat when operating or is use. The water generating unit can be configured to use waste heat generated by the waste-heat-generating-system to generate the water.
-
公开(公告)号:US20240229681A1
公开(公告)日:2024-07-11
申请号:US18403991
申请日:2024-01-04
Applicant: Rondo Energy, Inc.
Inventor: John Setel O'Donnell , Peter Emery von Behrens , Chiaki Treynor , Jeremy Quentin Keller , Matthieu Jonemann , Robert Ratz , Yusef Desjardins Ferhani
IPC: F01K3/02 , B63H1/12 , B63H11/00 , B63H11/12 , B63H11/14 , B63H11/16 , F01K3/08 , F01K3/18 , F01K11/02 , F01K13/02 , F01K15/00 , F01K19/04 , F03D9/18 , F03G6/00 , F22B29/06 , F22B35/10 , F28D20/00 , H01M8/04007 , H01M8/04014 , H01M8/04029 , H02J1/10 , H02J3/00 , H02J3/04 , H02M1/00
CPC classification number: F01K3/02 , B63H11/00 , F01K3/08 , F01K3/186 , F01K13/02 , F01K15/00 , F03G6/071 , F22B29/06 , F22B35/10 , F28D20/00 , H01M8/04014 , H01M8/04029 , H01M8/04037 , H01M8/04052 , H01M8/04074 , H02J1/102 , H02J3/00 , H02J3/04 , H02M1/0003 , H02M1/007 , B63H1/12 , B63H11/12 , B63H11/14 , B63H11/16 , F01K11/02 , F01K19/04 , F03D9/18 , F28D2020/0004 , Y02E60/14
Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability. High-voltage DC power conversion and distribution circuitry improves the efficiency of VRE power transfer into the system.
-
公开(公告)号:US20240229680A1
公开(公告)日:2024-07-11
申请号:US18403977
申请日:2024-01-04
Applicant: Rondo Energy, Inc.
Inventor: John Setel O'Donnell , Peter Emery von Behrens , Chiaki Treynor , Jeremy Quentin Keller , Matthieu Jonemann , Robert Ratz , Yusef Desjardins Ferhani
IPC: F01K3/02 , B63H1/12 , B63H11/00 , B63H11/12 , B63H11/14 , B63H11/16 , F01K3/08 , F01K3/18 , F01K11/02 , F01K13/02 , F01K15/00 , F01K19/04 , F03D9/18 , F03G6/00 , F22B29/06 , F22B35/10 , F28D20/00 , H01M8/04007 , H01M8/04014 , H01M8/04029 , H02J1/10 , H02J3/00 , H02J3/04 , H02M1/00
CPC classification number: F01K3/02 , B63H11/00 , F01K3/08 , F01K3/186 , F01K13/02 , F01K15/00 , F03G6/071 , F22B29/06 , F22B35/10 , F28D20/00 , H01M8/04014 , H01M8/04029 , H01M8/04037 , H01M8/04052 , H01M8/04074 , H02J1/102 , H02J3/00 , H02J3/04 , H02M1/0003 , H02M1/007 , B63H1/12 , B63H11/12 , B63H11/14 , B63H11/16 , F01K11/02 , F01K19/04 , F03D9/18 , F28D2020/0004 , Y02E60/14
Abstract: An apparatus includes one or more thermal storage blocks that define a radiation chamber and a fluid flow slot positioned above the radiation chamber to define a fluid pathway in a first direction. The apparatus includes a heater element positioned adjacent to the radiation chamber in a second, different direction, wherein the radiation chamber is open on at least one side to the heater element. The apparatus includes a fluid movement system configured to direct a stream of fluid through the fluid pathway in the first direction.
-
公开(公告)号:US20240218811A1
公开(公告)日:2024-07-04
申请号:US18404112
申请日:2024-01-04
Applicant: Rondo Energy, Inc.
Inventor: John Setel O'Donnell , Peter Emery von Behrens , Chiaki Treynor , Jeremy Quentin Keller , Matthieu Jonemann , Robert Ratz , Yusef Desjardins Ferhani
IPC: F01K3/02 , B63H1/12 , B63H11/00 , B63H11/12 , B63H11/14 , B63H11/16 , F01K3/08 , F01K3/18 , F01K11/02 , F01K13/02 , F01K15/00 , F01K19/04 , F03D9/18 , F03G6/00 , F22B29/06 , F22B35/10 , F28D20/00 , H01M8/04007 , H01M8/04014 , H01M8/04029 , H02J1/10 , H02J3/00 , H02J3/04 , H02M1/00
CPC classification number: F01K3/02 , B63H11/00 , F01K3/08 , F01K3/186 , F01K13/02 , F01K15/00 , F03G6/071 , F22B29/06 , F22B35/10 , F28D20/00 , H01M8/04014 , H01M8/04029 , H01M8/04037 , H01M8/04052 , H01M8/04074 , H02J1/102 , H02J3/00 , H02J3/04 , H02M1/0003 , H02M1/007 , B63H1/12 , B63H11/12 , B63H11/14 , B63H11/16 , F01K11/02 , F01K19/04 , F03D9/18 , F28D2020/0004 , Y02E60/14
Abstract: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability. High-voltage DC power conversion and distribution circuitry improves the efficiency of VRE power transfer into the system.
-
公开(公告)号:US20240212073A1
公开(公告)日:2024-06-27
申请号:US18400783
申请日:2023-12-29
Applicant: Johnson Controls Tyco IP Holdings LLP
Inventor: Michael J. Wenzel
CPC classification number: G06Q50/06 , F01K13/00 , F01K13/02 , G05B13/042 , G06Q10/20 , G06Q30/0283
Abstract: A control system for cost optimal operation of an energy facility including equipment includes a controller configured to provide a cost function comprising a cost term defining a cost as a function of a rate variable and an equipment usage variable, simulate the cost of operating the energy facility over an optimization period at each of a plurality of different values of the rate variable which define a plurality of different costs per unit of the equipment usage variable, select a value of the rate variable that results in a lowest cost of operating the energy facility over the optimization period, perform an online optimization of the cost function with the rate variable set to the selected value to generate one or more setpoints for the equipment, and operate the equipment during the optimization period in accordance with the generated setpoints.
-
公开(公告)号:US20240200470A1
公开(公告)日:2024-06-20
申请号:US18587787
申请日:2024-02-26
Applicant: Rondo Energy, Inc.
Inventor: John Setel O'DONNELL , Yusef Desjardins FERHANI
IPC: F01K3/02 , B63H11/00 , B63H11/12 , B63H11/14 , B63H11/16 , F01K3/08 , F01K3/18 , F01K11/02 , F01K13/02 , F01K15/00 , F01K19/04 , F03D9/18 , F03G6/00 , F22B29/06 , F22B35/10 , F28D20/00 , H01M8/04007 , H01M8/04014 , H01M8/04029 , H02J1/10 , H02J3/00 , H02J3/04 , H02M1/00
CPC classification number: F01K3/02 , B63H11/00 , F01K3/08 , F01K3/186 , F01K13/02 , F01K15/00 , F03G6/071 , F22B29/06 , F22B35/10 , F28D20/00 , H01M8/04014 , H01M8/04029 , H01M8/04037 , H01M8/04052 , H01M8/04074 , H02J1/102 , H02J3/00 , H02J3/04 , H02M1/0003 , H02M1/007 , B63H11/12 , B63H11/14 , B63H11/16 , F01K11/02 , F01K19/04 , F03D9/18 , F28D2020/0004 , Y02E60/14
Abstract: An energy storage system (TES) converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. The delivered heat which may be used for processes including power generation and cogeneration. In one application, the TES provides higher-temperature heat through non-combustible fluid to an alumina calcination system used to remove impurities or volatile substances and/or to incur thermal decomposition to a desired product.
-
公开(公告)号:US11994347B2
公开(公告)日:2024-05-28
申请号:US17847993
申请日:2022-06-23
Applicant: Antora Energy, Inc.
Inventor: Andrew Joseph Ponec , Justin Briggs , David Bierman , Sam Kortz
CPC classification number: F28D20/0056 , F01K3/12 , F01K3/186 , F01K13/02 , F28D2020/0069 , F28D2020/0078 , F28D2020/0086 , Y02E60/14
Abstract: A thermal storage solution system is disclosed herein. The system includes an insulated container having a thermal storage medium, a heating element configured to heat the thermal storage medium, a heat receiving unit (e.g., thermophotovoltaic (TPV) heat engine, heat transfer fluid, an industrial process component) configured to convert heat into electric energy, and a mechanism configured to control a view factor between the thermal storage medium and the heat engine. In another embodiment, the system includes multiple thermal storage media as unit cells in a single enclosure or container with insulation between adjacent unit cells.
-
公开(公告)号:US20240133321A1
公开(公告)日:2024-04-25
申请号:US17769387
申请日:2020-07-14
Applicant: Siemens Energy Global GmbH & Co. KG
Inventor: Carsten Graeber , Uwe Juretzek
Abstract: An apparatus includes a closed gas system having: a working circuit in which a compressor for a working fluid, a first heat exchanger for heating the working fluid, an expander and a second heat exchanger for cooling the working fluid are arranged; a first pressurised gas tank and a first gas pipe which branches off from the working circuit between the compressor and the first heat exchanger and opens into the first pressurised gas tank; and a second gas pipe which branches off from the first pressurised gas tank and opens into the working circuit between the expander and the second heat exchanger. A method controls pressure in a closed gas system using the apparatus.
-
-
-
-
-
-
-
-
-