Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media for classification using neural networks. One method includes receiving audio data corresponding to an utterance. Obtaining a transcription of the utterance. Generating a representation of the audio data. Generating a representation of the transcription of the utterance. Providing (i) the representation of the audio data and (ii) the representation of the transcription of the utterance to a classifier that, based on a given representation of the audio data and a given representation of the transcription of the utterance, is trained to output an indication of whether the utterance associated with the given representation is likely directed to an automated assistance or is likely not directed to an automated assistant. Receiving, from the classifier, an indication of whether the utterance corresponding to the received audio data is likely directed to the automated assistant or is likely not directed to the automated assistant. Selectively instructing the automated assistant based at least on the indication of whether the utterance corresponding to the received audio data is likely directed to the automated assistant or is likely not directed to the automated assistant.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods for training a deep neural network that includes a low rank hidden input layer and an adjoining hidden layer, the low rank hidden input layer including a first matrix A and a second matrix B with dimensions i×m and m×o, respectively, to identify a keyword includes receiving a feature vector including i values that represent features of an audio signal encoding an utterance, determining, using the low rank hidden input layer, an output vector including o values using the feature vector, determining, using the adjoining hidden layer, another vector using the output vector, determining a confidence score that indicates whether the utterance includes the keyword using the other vector, and adjusting weights for the low rank hidden input layer using the confidence score.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recognizing keywords using a long short term memory neural network. One of the methods includes receiving, by a device for each of multiple variable length enrollment audio signals, a respective plurality of enrollment feature vectors that represent features of the respective variable length enrollment audio signal, processing each of the plurality of enrollment feature vectors using a long short term memory (LSTM) neural network to generate a respective enrollment LSTM output vector for each enrollment feature vector, and generating, for the respective variable length enrollment audio signal, a template fixed length representation for use in determining whether another audio signal encodes another spoken utterance of the enrollment phrase by combining at most a quantity k of the enrollment LSTM output vectors for the enrollment audio signal.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for key phrase detection. One of the methods includes receiving a plurality of audio frame vectors that each model an audio waveform during a different period of time, generating an output feature vector for each of the audio frame vectors, wherein each output feature vector includes a set of scores that characterize an acoustic match between the corresponding audio frame vector and a set of expected event vectors, each of the expected event vectors corresponding to one of the scores and defining acoustic properties of at least a portion of a keyword, and providing each of the output feature vectors to a posterior handling module.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recognizing keywords using a long short term memory neural network. One of the methods includes receiving, by a device for each of multiple variable length enrollment audio signals, a respective plurality of enrollment feature vectors that represent features of the respective variable length enrollment audio signal, processing each of the plurality of enrollment feature vectors using a long short term memory (LSTM) neural network to generate a respective enrollment LSTM output vector for each enrollment feature vector, and generating, for the respective variable length enrollment audio signal, a template fixed length representation for use in determining whether another audio signal encodes another spoken utterance of the enrollment phrase by combining at most a quantity k of the enrollment LSTM output vectors for the enrollment audio signal.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recognizing keywords using a long short term memory neural network. One of the methods includes receiving, by a device for each of multiple variable length enrollment audio signals, a respective plurality of enrollment feature vectors that represent features of the respective variable length enrollment audio signal, processing each of the plurality of enrollment feature vectors using a long short term memory (LSTM) neural network to generate a respective enrollment LSTM output vector for each enrollment feature vector, and generating, for the respective variable length enrollment audio signal, a template fixed length representation for use in determining whether another audio signal encodes another spoken utterance of the enrollment phrase by combining at most a quantity k of the enrollment LSTM output vectors for the enrollment audio signal.
Abstract:
Embodiments pertain to automatic speech recognition in mobile devices to establish the presence of a keyword. An audio waveform is received at a mobile device. Front-end feature extraction is performed on the audio waveform, followed by acoustic modeling, high level feature extraction, and output classification to detect the keyword. Acoustic modeling may use a neural network or Gaussian mixture modeling, and high level feature extraction may be done by aligning the results of the acoustic modeling with expected event vectors that correspond to a keyword.