Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recognizing keywords using a long short term memory neural network. One of the methods includes receiving, by a device for each of multiple variable length enrollment audio signals, a respective plurality of enrollment feature vectors that represent features of the respective variable length enrollment audio signal, processing each of the plurality of enrollment feature vectors using a long short term memory (LSTM) neural network to generate a respective enrollment LSTM output vector for each enrollment feature vector, and generating, for the respective variable length enrollment audio signal, a template fixed length representation for use in determining whether another audio signal encodes another spoken utterance of the enrollment phrase by combining at most a quantity k of the enrollment LSTM output vectors for the enrollment audio signal.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods includes training a deep neural network with a first training set by adjusting values for each of a plurality of weights included in the neural network, and training the deep neural network to determine a probability that data received by the deep neural network has features similar to key features of one or more keywords or key phrases, the training comprising providing the deep neural network with a second training set and adjusting the values for a first subset of the plurality of weights, wherein the second training set includes data representing the key features of the one or more keywords or key phrases.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recognizing keywords using a long short term memory neural network. One of the methods includes receiving, by a device for each of multiple variable length enrollment audio signals, a respective plurality of enrollment feature vectors that represent features of the respective variable length enrollment audio signal, processing each of the plurality of enrollment feature vectors using a long short term memory (LSTM) neural network to generate a respective enrollment LSTM output vector for each enrollment feature vector, and generating, for the respective variable length enrollment audio signal, a template fixed length representation for use in determining whether another audio signal encodes another spoken utterance of the enrollment phrase by combining at most a quantity k of the enrollment LSTM output vectors for the enrollment audio signal.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recognizing keywords using a long short term memory neural network. One of the methods includes receiving, by a device for each of multiple variable length enrollment audio signals, a respective plurality of enrollment feature vectors that represent features of the respective variable length enrollment audio signal, processing each of the plurality of enrollment feature vectors using a long short term memory (LSTM) neural network to generate a respective enrollment LSTM output vector for each enrollment feature vector, and generating, for the respective variable length enrollment audio signal, a template fixed length representation for use in determining whether another audio signal encodes another spoken utterance of the enrollment phrase by combining at most a quantity k of the enrollment LSTM output vectors for the enrollment audio signal.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods includes training a deep neural network with a first training set by adjusting values for each of a plurality of weights included in the neural network, and training the deep neural network to determine a probability that data received by the deep neural network has features similar to key features of one or more keywords or key phrases, the training comprising providing the deep neural network with a second training set and adjusting the values for a first subset of the plurality of weights, wherein the second training set includes data representing the key features of the one or more keywords or key phrases.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for key phrase detection. One of the methods includes receiving a plurality of audio frame vectors that each model an audio waveform during a different period of time, generating an output feature vector for each of the audio frame vectors, wherein each output feature vector includes a set of scores that characterize an acoustic match between the corresponding audio frame vector and a set of expected event vectors, each of the expected event vectors corresponding to one of the scores and defining acoustic properties of at least a portion of a keyword, and providing each of the output feature vectors to a posterior handling module.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recognizing keywords using a long short term memory neural network. One of the methods includes receiving, by a device for each of multiple variable length enrollment audio signals, a respective plurality of enrollment feature vectors that represent features of the respective variable length enrollment audio signal, processing each of the plurality of enrollment feature vectors using a long short term memory (LSTM) neural network to generate a respective enrollment LSTM output vector for each enrollment feature vector, and generating, for the respective variable length enrollment audio signal, a template fixed length representation for use in determining whether another audio signal encodes another spoken utterance of the enrollment phrase by combining at most a quantity k of the enrollment LSTM output vectors for the enrollment audio signal.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for key phrase detection. One of the methods includes receiving a plurality of audio frame vectors that each model an audio waveform during a different period of time, generating an output feature vector for each of the audio frame vectors, wherein each output feature vector includes a set of scores that characterize an acoustic match between the corresponding audio frame vector and a set of expected event vectors, each of the expected event vectors corresponding to one of the scores and defining acoustic properties of at least a portion of a keyword, and providing each of the output feature vectors to a posterior handling module.