Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating labeled images. One of the methods includes selecting a plurality of candidate videos from videos identified in a response to a search query derived from a label for an object category; selecting one or more initial frames from each of the candidate videos; detecting one or more initial images of objects in the object category in the initial frames; for each initial frame including an initial image of an object in the object category, tracking the object through surrounding frames to identify additional images of the object; and selecting one or more images from the one or more initial images and one or more additional images as database images of objects belonging to the object category.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for neural translation systems with rare word processing. One of the methods is a method training a neural network translation system to track the source in source sentences of unknown words in target sentences, in a source language and a target language, respectively and includes deriving alignment data from a parallel corpus, the alignment data identifying, in each pair of source and target language sentences in the parallel corpus, aligned source and target words; annotating the sentences in the parallel corpus according to the alignment data and a rare word model to generate a training dataset of paired source and target language sentences; and training a neural network translation model on the training dataset.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating document vector representations. One of the methods includes obtaining a new document; selecting a plurality of new document word sets; and determining a vector representation for the new document using a trained neural network system, wherein the trained neural network system comprises: a document embedding layer and a classifier, and wherein determining the vector representation for the new document using the trained neural network system comprises iteratively providing each of the plurality of new document word sets to the trained neural network system to determine the vector representation for the new document using gradient descent.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing operations using data from a data source. In one aspect, a method includes a neural network system including a controller neural network configured to: receive a controller input for a time step and process the controller input and a representation of a system input to generate: an operation score distribution that assigns a respective operation score to an operation and a data score distribution that assigns a respective data score in the data source. The neural network system can also include an operation subsystem configured to: perform operations to generate operation outputs, wherein at least one of the operations is performed on data in the data source, and combine the operation outputs in accordance with the operation score distribution and the data score distribution to generate a time step output for the time step.