Abstract:
Methods, systems and apparatus, including computer programs encoded on computer storage media, for training a value neural network that is configured to receive an observation characterizing a state of an environment being interacted with by an agent and to process the observation in accordance with parameters of the value neural network to generate a value score. One of the systems performs operations that include training a supervised learning policy neural network; initializing initial values of parameters of a reinforcement learning policy neural network having a same architecture as the supervised learning policy network to the trained values of the parameters of the supervised learning policy neural network; training the reinforcement learning policy neural network on second training data; and training the value neural network to generate a value score for the state of the environment that represents a predicted long-term reward resulting from the environment being in the state.
Abstract:
A parallel convolutional neural network is provided. The CNN is implemented by a plurality of convolutional neural networks each on a respective processing node. Each CNN has a plurality of layers. A subset of the layers are interconnected between processing nodes such that activations are fed forward across nodes. The remaining subset is not so interconnected.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing operations using data from a data source. In one aspect, a method includes a neural network system including a controller neural network configured to: receive a controller input for a time step and process the controller input and a representation of a system input to generate: an operation score distribution that assigns a respective operation score to an operation and a data score distribution that assigns a respective data score in the data source. The neural network system can also include an operation subsystem configured to: perform operations to generate operation outputs, wherein at least one of the operations is performed on data in the data source, and combine the operation outputs in accordance with the operation score distribution and the data score distribution to generate a time step output for the time step.
Abstract:
A system for training a neural network. A switch is linked to feature detectors in at least some of the layers of the neural network. For each training case, the switch randomly selectively disables each of the feature detectors in accordance with a preconfigured probability. The weights from each training case are then normalized for applying the neural network to test data.
Abstract:
Methods, systems and apparatus, including computer programs encoded on computer storage media, for training a value neural network that is configured to receive an observation characterizing a state of an environment being interacted with by an agent and to process the observation in accordance with parameters of the value neural network to generate a value score. One of the systems performs operations that include training a supervised learning policy neural network; initializing initial values of parameters of a reinforcement learning policy neural network having a same architecture as the supervised learning policy network to the trained values of the parameters of the supervised learning policy neural network; training the reinforcement learning policy neural network on second training data; and training the value neural network to generate a value score for the state of the environment that represents a predicted long-term reward resulting from the environment being in the state.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for neural translation systems with rare word processing. One of the methods is a method training a neural network translation system to track the source in source sentences of unknown words in target sentences, in a source language and a target language, respectively and includes deriving alignment data from a parallel corpus, the alignment data identifying, in each pair of source and target language sentences in the parallel corpus, aligned source and target words; annotating the sentences in the parallel corpus according to the alignment data and a rare word model to generate a training dataset of paired source and target language sentences; and training a neural network translation model on the training dataset.
Abstract:
A parallel convolutional neural network is provided. The CNN is implemented by a plurality of convolutional neural networks each on a respective processing node. Each CNN has a plurality of layers. A subset of the layers are interconnected between processing nodes such that activations are fed forward across nodes. The remaining subset is not so interconnected.
Abstract:
A system for training a neural network. A switch is linked to feature detectors in at least some of the layers of the neural network. For each training case, the switch randomly selectively disables each of the feature detectors in accordance with a preconfigured probability. The weights from each training case are then normalized for applying the neural network to test data.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for implementing a convolutional gated recurrent neural network (CGRN). In one of the systems, the CGRN is configured to maintain a state that is a tensor having dimensions x by y by m, wherein x, y, and m are each greater than one, and for each of a plurality of time steps, update a currently maintained state by processing the currently maintained state through a plurality of convolutional gates.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for predicting likelihoods of conditions being satisfied using recurrent neural networks. One of the systems is configured to process a temporal sequence comprising a respective input at each of a plurality of time steps and comprises: one or more recurrent neural network layers; one or more logistic regression nodes, wherein each of the logistic regression nodes corresponds to a respective condition from a predetermined set of conditions, and wherein each of the logistic regression nodes is configured to, for each of the plurality of time steps: receive the network internal state for the time step; and process the network internal state for the time step in accordance with current values of a set of parameters of the logistic regression node to generate a future condition score for the corresponding condition for the time step.