Abstract:
Embodiments pertain to automatic speech recognition in mobile devices to establish the presence of a keyword. An audio waveform is received at a mobile device. Front-end feature extraction is performed on the audio waveform, followed by acoustic modeling, high level feature extraction, and output classification to detect the keyword. Acoustic modeling may use a neural network or a vector quantization dictionary and high level feature extraction may use pooling.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for image processing using deep neural networks. One of the methods includes receiving data characterizing an input image; processing the data characterizing the input image using a deep neural network to generate an alternative representation of the input image, wherein the deep neural network comprises a plurality of subnetworks, wherein the subnetworks are arranged in a sequence from lowest to highest, and wherein processing the data characterizing the input image using the deep neural network comprises processing the data through each of the subnetworks in the sequence; and processing the alternative representation of the input image through an output layer to generate an output from the input image.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.
Abstract:
The present disclosure relates to optimized matrix multiplication using vector multiplication of interleaved matrix values. Two matrices to be multiplied are organized into specially ordered vectors, which are multiplied together to produce a portion of a product matrix.
Abstract:
An embodiment provides for enabling retrieval of a collection of captured images that form at least a portion of a library of images. For each image in the collection, a captured image may be analyzed to recognize information from image data contained in the captured image, and an index may be generated, where the index data is based on the recognized information. Using the index, functionality such as search and retrieval is enabled. Various recognition techniques, including those that use the face, clothing, apparel, and combinations of characteristics may be utilized. Recognition may be performed on, among other things, persons and text carried on objects.
Abstract:
An image-based content item is analyzed to determine one or more interests of a viewer of the content item. The analysis may include performing image analysis on the content item to determine geographic information that is relevant to an image of the content item. The one or more interests may be determined based on an assumption or probabilistic conclusion about a subject of the content item. Further, the one or more interests may be determined by applying one or more rules that utilize the geographic information. For some embodiments, a supplemental content item may be provided to the viewer based on the one or more interests.