Abstract:
A line striper comprises a sprayer secured to a frame, and a guided wheel assembly rotatably mounted to the frame. The guided wheel assembly includes an adjustment disk with screw notches along its outer diameter, an alignment plate coaxially surrounding and abutting the adjustment disk, alignment screws threaded through the alignment plate to engage screw notches on the adjustment disk, and an antirotation lock. The screws set a rotational alignment of the alignment plate relative to the adjustment disk, and the adjustment disk is coupled via a spindle axle to a guide wheel. The antirotation lock engages a locking feature on the alignment plate, thereby fixing the orientation of the guide wheel relative to the wheeled frame at an angle determined by the rotational alignment.
Abstract:
A line striping system comprises a chassis, wheels, a spray system, a propulsion system and a steering system. The wheels are mounted under the chassis. The spray system is mounted on the chassis. The propulsion system is mounted on the chassis to drive a wheel. The steering system is coupled to the chassis. The steering system comprises a handlebar rotatatable to steer a wheel, and a speed bar pivotable to control the propulsion system.
Abstract:
A material sprayer includes a hopper and a shaker assembly mounted onto a sidewall of the hopper. The hopper includes at least one sidewall that extends along a first plane. The shaker assembly includes a resilient bracket, an electromagnetic coil, and an armature. The resilient bracket is mounted to the sidewall of the hopper and includes first and second ends and a curved portion. The electromagnetic coil is mounted to a portion of the resilient bracket and is configured to generate a magnetic field in response to a current from a power source. The armature is mounted to a portion of the resilient bracket such that the armature is able to move relative to the electromagnetic coil along an acceleration axis that is orthogonal to the first plane of the sidewall of the hopper.
Abstract:
A line striping system comprises a chassis, wheels, a spray system, a propulsion system and a steering system. The wheels are mounted under the chassis. The spray system is mounted on the chassis. The propulsion system is mounted on the chassis to drive a wheel. The steering system is coupled to the chassis. The steering system comprises a handlebar rotatatable to steer a wheel, and a speed bar pivotable to control the propulsion system.
Abstract:
A fluid dispensing device includes an electrostatic discharge protection system. Accumulation and discharge of electrostatic energy created by operation of the device is reduced or prevented by the electrostatic discharge protection system without an earth ground connection. The electrostatic discharge protection system may include a number of features, such as a static wick, nonconductive components that electrically isolate the spray tip of the device, nonconductive isolation barriers, nonconductive fluid reservoir and suction tube components, a nonconductive coating of a control valve component, and a nonconductive spring retainer of the control valve.
Abstract:
A line striping system comprises a chassis, wheels, a spray system, a propulsion system and a steering system. The wheels are mounted under the chassis. The spray system is mounted on the chassis. The propulsion system is mounted on the chassis to drive a wheel. The steering system is coupled to the chassis. The steering system comprises a handlebar rotatable to steer a wheel, and a speed bar pivotable to control the propulsion system.
Abstract:
An electro-hydraulic actuation system for a sprayer comprises a hydraulic system, a hydraulic actuator, an electric actuator and a sprayer. The hydraulic system is for pressurizing a hydraulic fluid. The hydraulic actuator is powered by the hydraulic system. The electric actuator controls actuation of the hydraulic actuator by the hydraulic system. The sprayer is actuated by the hydraulic actuator.
Abstract:
A method of mounting at least one spray gun assembly onto an arm of a line striper includes installing a first clamp onto the arm with the first clamp being connected to a first spray gun assembly and the first clamp having an opening. The first clamp is installed onto the arm by placing the arm within the opening of the first clamp without sliding the first clamp onto an end of the arm. The method also includes securing the arm of the line striper within the opening of the first clamp.
Abstract:
A material sprayer includes a hopper and a shaker assembly mounted onto a sidewall of the hopper. The hopper includes at least one sidewall that extends along a first plane. The shaker assembly includes a resilient bracket, an electromagnetic coil, and an armature. The resilient bracket is mounted to the sidewall of the hopper and includes first and second ends and a curved portion. The electromagnetic coil is mounted to a portion of the resilient bracket and is configured to generate a magnetic field in response to a current from a power source. The armature is mounted to a portion of the resilient bracket such that the armature is able to move relative to the electromagnetic coil along an acceleration axis that is orthogonal to the first plane of the sidewall of the hopper.
Abstract:
A method of mounting at least one spray gun assembly onto an arm of a line striper includes installing a first clamp onto the arm with the first clamp being connected to a first spray gun assembly and the first clamp having an opening. The first clamp is installed onto the arm by placing the arm within the opening of the first clamp without sliding the first clamp onto an end of the arm. The method also includes securing the arm of the line striper within the opening of the first clamp.