Abstract:
A computer-implemented method for predicting material properties in an Additive Manufacturing (AM) process is provided. The method comprises: receiving sensor data during the build of a metallic component using the AM process wherein the sensor data includes time-series temperature data of a surface of the metallic component recorded by a photodiode and time-series temperature data of a surface of the metallic component recorded by a pyrometer; receiving ICME (Integrated Computational Materials Engineering) model output data for building the component wherein the ICME model output data includes predicted melt pool dimensions time-series data, predicted melt temperature time-series data, and predicted defects forming as a result of melt pool evolution and movement; and estimating using the received sensor data and the received ICME model output data one or more material properties associated with the metallic component using a material property prediction module configured to predict one or more of the material properties.
Abstract:
A method in an aircraft of using prognostic indicators for aircraft maintenance includes retrieving aircraft health data for a plurality of aircraft components wherein the aircraft health data includes at least one of mechanical systems condition indicator (CI) data, vibration spectrum data, resampled time-domain (RTD) data, and RTD spectrum data. The method includes estimating component health status information for the plurality of aircraft components using a plurality of prognostic modules wherein each prognostic module is configured to generate health status information for at least one of the aircraft components, the health status information includes at least one of a current health indicator and a prognostic indicator. The method also includes storing the component health status information for the aircraft components in a database onboard the aircraft, and causing the display of the health status information for the specific component on an aircraft display.
Abstract:
A power line communication and real-time wiring fault location system includes a power distribution system, a plurality of solid-state power controllers, and a communication and fault location determination circuit. The power distribution system includes an upstream power feeder line and a plurality of load-end feeder lines. Each solid-state power controller is associated with a different one of the load-end feeder lines and is configured to selectively couple its associated load-end feeder line to the upstream power feeder line and detect an electrical fault on its associated load-end feeder line or in an electrical load to which the associated load-end feeder line is coupled. The communication and fault location determination circuit is coupled to each of the load-end feeder lines and is configured, in response to a channel selection command, to selectively transmit a fault location stimulation signal onto one of the load-end feeder lines.
Abstract:
A health monitoring system for monitoring a vehicle and a method for operating the same are provided. The system, for example, may include, but is not limited to, at least one sensor configured to collect data corresponding to the vehicle, an interface system, a memory, and a processor communicatively coupled to the at least one sensor, the interface system and the memory, the processor configured to: determine when the vehicle is experiencing an anomaly, collect, from the interface system, data corresponding to the anomaly from a user of the vehicle, and associate, the data collected from the interface system and the data collected from the at least one sensor.
Abstract:
An improved rotorcraft blade tracking system and method is provided. The provided blade tracking system and method projects a focused beam of light with minimal variance in predetermined spectral characteristics at the ranges of distance suitable for rotorcraft blade tracking applications. The provided system and method detects a reflected beam of light that is associated with the projected focused beam of light. The provided system and method maintains eye safety, and performs consistently over a variety of environmental conditions.