Abstract:
Energy scavenging health monitors are provided for assessing the health of components onboard aircraft and other vehicles, as are methods carried-out by energy scavenging health monitors. In various embodiments, the energy scavenging health monitor includes an energy scavenger system, a controller coupled to the energy scavenger system, and a first sensor coupled to the controller. During operation of the health monitor, the first sensor provides sensor signals to the controller, which are indicative of an operational parameter pertaining to a monitored device of the vehicle. Storage media contains computer-readable instructions, which when executed by the controller, cause the energy scavenging health monitor to determine when a predetermined trigger event has occurred based, at least in part, on electrical input signals received from the energy scavenger system. In response to occurrence of the predetermined trigger event, the controller further stores data indicative of the sensor signals in the storage media.
Abstract:
In one embodiment, a method is provided. The method comprises: receiving, in a vehicle, at least one pollution parameter; and adjusting at least one fluid flow regulating mechanism position, to regulate an intake of pollutants into an environmental control system of the vehicle, based upon the at least one pollution parameter.
Abstract:
A maintenance system is provided for an environment conditioning element of an environmental control system (ECS) of a vehicle. The system includes a data collection module configured to receive geographical areas of travel for the vehicle over respective periods of time. The data collection module is configured to determine a pollution value and a time value for each of the geographic areas of travel. The system further includes a pollution count module coupled to the data collection module and receiving the pollution values and the time values. The pollution count module is configured to determine a pollution count for the environment conditioning element based on the pollution values and the time values. The system further includes a reporting module coupled to the pollution count module and receiving the pollution count. The reporting module is configured to generate a report for a user that includes the pollution count.
Abstract:
A method includes receiving information associated with operation of multiple pieces of industrial equipment at multiple sites. The multiple pieces of industrial equipment are of a same or similar type, and the information represents different types of data including operational data associated with the multiple pieces of industrial equipment and text-based data associated with the multiple pieces of industrial equipment. The method also includes analyzing the information to identify correlations in the information associated with one or more conditions involving the pieces of industrial equipment. The method further includes, based on the analyzing, generating one or more monitoring rules or routines to be used to identify the one or more conditions. The multiple pieces of industrial equipment could include machines with rotating components, machines with heat transfer equipment, or general process equipment.
Abstract:
Methods and systems are provided for recording natural conversation of a user of a vehicle. In one embodiment, a method includes: recognizing speech from the recording; processing the recognized speech to determine a meaning associated with the speech; identifying a category of the speech based on the meaning; and generating a maintenance report to be used by a maintainer of the vehicle based on the category and the speech.
Abstract:
A method of calibrating a radar-based vibration sensor that includes a radar head coupled to a vibration device includes disposing the vibration sensor at a fixed distance from a target, and transmitting radio frequency (RF) signals toward, and receiving RF signals reflected by, the target. An excitation voltage is supplied, at a plurality of different excitation frequencies, to the vibration device to cause the vibration sensor to vibrate. Vibration sensor acceleration is determined at each of the different excitation frequencies. A calibration curve is generated based on the determined vibration sensor acceleration at each of the different excitation frequencies, and on the reflected RF signals at each of the different excitation frequencies.
Abstract:
Methods and systems are provided for predictive maintenance of a vehicle component. One method involves mapping a current instance of a component of a vehicle to one of plurality of degradation groups of prior lifecycles for other instances of the component based on a relationship between performance measurement data for the current instance and historical performance measurement data associated with that respective degradation group, obtaining contextual data associated with operation of the vehicle, and determining a maintenance recommendation for the current instance of the component based on the contextual data using a predictive maintenance model associated with the mapped degradation group.
Abstract:
Systems and methods are disclosed for data collection from landing gear components and providing predictive analytics. Example methods include sending a signal to excite wheel assembly sensors located on a vehicle, and receiving a return signal encoded with measurement data. The measurement data is then stored on an RFID card, on an edge node, and/or on a remote server. Upon receipt of the measurement data by a remote server, the remote server analyzes the data to generate predictive maintenance analytics data.
Abstract:
Systems and methods are disclosed for predicting a hot spot. One method comprises receiving, by a hot spot prediction system, vehicle characteristics associated with a vehicle and traffic data. Then the hot spot prediction system determines a hot spot and an estimated arrival time at the hot spot based on the vehicle characteristics and the traffic data. Following the determination, an auto brake application system receives the hot spot and the estimated arrival time and determines a safe stop time based on the vehicle characteristics, the hot spot and the estimated arrival time. The auto brake application system then sends a notification to the vehicle based on determining that the vehicle can stop within the safe stop time, and performs an action in response to receiving a confirmation from the vehicle.
Abstract:
In some examples, a device can be used for measuring a length of a wear indicator on a brake assembly. The device includes a moveable component configured to move based on contact with the wear indicator. The device also includes a sensor configured to detect a displacement of the moveable component. The device further includes processing circuitry configured to determine the length of the wear indicator based on the displacement of the moveable component detected by the sensor.